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a b s t r a c t

A generalization is provided for a reduction formula for the Kampé de Fériet function due
to Cvijović.
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1. Introduction

Recently, the authors have derived several new summation formulas for hypergeometric-type series containing the
digamma or psi function ψ(z). The summation formula [1]
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where z lies in the domain |z| < 1, <(z) < 1/2, was employed to obtain a reduction formula for the Kampé de Fériet
(hereafter KdF) function thatwe shall in Section 2 extend to amuchmore general result. In Eq. (1.1) and below, all parameters
and variables are complex unless otherwise noted or it is obvious from the context. The Pochhammer symbol (α)n, where n
is an integer (positive, negative or zero) is defined simply by (α)n ≡ Γ (α + n)/Γ (α).
In the sequel, the sequence (α1, . . . , αp) is denoted simply by (αp) and the product of p Pochhammer symbols ((αp)) is

defined by ((αp))n ≡ (α1)n · · · (αp)n, where an empty product p = 0 reduces to unity. The KdF function is a generalized
hypergeometric function in two variables defined by the double series
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See for example [2,3] for an introduction to the KdF function and its properties including its convergence criteria.
In [1,4] we showed that

∞∑
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∣∣∣∣z, z] . (1.3)

This result shows that a generalized hypergeometric-type series containing the digamma function may essentially be
represented by a specialization of the KdF function in two equal variables.
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2. Reduction formula

As a byproduct of efficiently deriving closed form representations for certain series due toMiller [4] Cvijović [1, equation
(3.3)] employed Eqs. (1.1) and (1.3) to obtain the reduction formula for the KdF function
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where z lies in the domain |z| < 1, and<(z) < 1/2.
The KdF function has proved of practical utility in representing solutions to a wide range of problems in pure and applied

mathematics and mathematical physics. See the books by Exton [2,5]; for additional examples of applications, see [6,7].
Reduction formulas such as Eq. (2.1) essentially represent the KdF function as a generalized hypergeometric function of
lower order or some other function in one variable. Obviously, identifying such reductions have great value in simplifying
solutions. Thus, compilations of them such as [3, pp. 28–32] and [8] are especially important, since there is no a priori way
of knowing their existence.
It is the purpose here to augment the known results intimated above by showing that the formula (2.1) is a specialization

of the much more general result
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which we derive below. Clearly, when γ = 1, ε = 1 and δ = β , Eq. (2.2) reduces to Eq. (2.1). Convergence for the KdF
function occurs when |z| < 1 (see [3, p. 27]); convergence for 3F2 function obviously occurs when |z/(z − 1)| < 1. Thus,
Eqs. (2.1) and (2.2) are valid for z in the domain |z| < 1,<(z) < 1/2.
We recall the identity

(α)m+n = (α)m(α +m)n. (2.3)

For brevity calling the left side of Eq. (2.2) F(z, z), we have upon recalling the definition of the KdF function (see Eq. (1.2))
and utilizing (2.3)
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Now, applying Euler’s transformation (see e.g. [9, p. 33, equation (19)])
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with a = α +m, b = ε, and c = β +mwe see upon again utilizing Eq. (2.3) that
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Assuming absolutely convergent series for an arbitrary function B(m, n) by invoking series rearrangement via
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we see from the latter result for F(z, z) that
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However, since (−1)m/(n−m)! = (−n)m/n!, we may write
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Now, utilizing the Vandermonde–Chu identity (see, for instance, [9, p. 30, equation (8)])
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which is a restatement of Eq. (2.2). This completes our proof of Eq. (2.2).
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