A reduction formula for the Kampé de Fériet function

Djurdje Cvijović ${ }^{\mathrm{a}, *}$, Allen R. Miller ${ }^{\text {b }}$
${ }^{\text {a }}$ Atomic Physics Laboratory, Vinča Institute of Nuclear Sciences, PO Box 522, 11001 Belgrade, Serbia
${ }^{\mathrm{b}} 1616$ 18th Street NW, Washington, DC 20009, USA

A R TICLE IN F O

Article history:

Received 24 November 2009
Received in revised form 8 February 2010
Accepted 18 March 2010

Keywords:

Kampé de Fériet function
Reduction formula
Generalized hypergeometric function in one and two variables

Abstract

A generalization is provided for a reduction formula for the Kampé de Fériet function due to Cvijović.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, the authors have derived several new summation formulas for hypergeometric-type series containing the digamma or psi function $\psi(z)$. The summation formula [1]

$$
\sum_{n=0}^{\infty}[\psi(\lambda+n)-\psi(\lambda)] \frac{(\alpha)_{n}}{(\lambda)_{n}} z^{n}=\frac{\alpha z}{\lambda^{2}(1-z)^{\alpha+1}}{ }_{3} F_{2}\left(\left.\begin{array}{l}
\alpha+1, \lambda, \lambda \tag{1.1}\\
\lambda+1, \lambda+1
\end{array} \right\rvert\, \frac{z}{z-1}\right)
$$

where z lies in the domain $|z|<1, \mathfrak{R}(z)<1 / 2$, was employed to obtain a reduction formula for the Kampé de Fériet (hereafter KdF) function that we shall in Section 2 extend to a much more general result. In Eq. (1.1) and below, all parameters and variables are complex unless otherwise noted or it is obvious from the context. The Pochhammer symbol $(\alpha)_{n}$, where n is an integer (positive, negative or zero) is defined simply by $(\alpha)_{n} \equiv \Gamma(\alpha+n) / \Gamma(\alpha)$.

In the sequel, the sequence $\left(\alpha_{1}, \ldots, \alpha_{p}\right)$ is denoted simply by $\left(\alpha_{p}\right)$ and the product of p Pochhammer symbols $\left(\left(\alpha_{p}\right)\right)$ is defined by $\left(\left(\alpha_{p}\right)\right)_{n} \equiv\left(\alpha_{1}\right)_{n} \cdots\left(\alpha_{p}\right)_{n}$, where an empty product $p=0$ reduces to unity. The KdF function is a generalized hypergeometric function in two variables defined by the double series

$$
F_{q: s ; v}^{p: r ; u}\left[\left.\begin{array}{l}
\left(a_{p}\right):\left(c_{r}\right) ;\left(f_{u}\right) \tag{1.2}\\
\left(b_{q}\right):\left(d_{s}\right) ;\left(g_{v}\right)
\end{array} \right\rvert\, x, y\right] \equiv \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{\left(\left(a_{p}\right)\right)_{m+n}}{\left(\left(b_{q}\right)\right)_{m+n}} \frac{\left(\left(c_{r}\right)\right)_{m}}{\left(\left(d_{s}\right)\right)_{m}} \frac{\left(\left(f_{u}\right)\right)_{n}}{\left(\left(g_{v}\right)\right)_{n}} \frac{x^{m}}{m!} \frac{y^{n}}{n!} .
$$

See for example $[2,3]$ for an introduction to the KdF function and its properties including its convergence criteria.
In $[1,4]$ we showed that

$$
\sum_{n=0}^{\infty}[\psi(\lambda+n+1)-\psi(\lambda)] \frac{\left(\left(\mu_{p}\right)\right)_{n}}{\left(\left(v_{q}\right)\right)_{n}} z^{n}=\frac{1}{\lambda} F_{q: 1 ; 0}^{p: 2 ; 1}\left[\left.\begin{array}{cc}
\left(\mu_{p}\right): \lambda, & 1 ; 1 \tag{1.3}\\
\left(v_{q}\right): \lambda+1 ;-
\end{array} \right\rvert\, z, z\right] .
$$

This result shows that a generalized hypergeometric-type series containing the digamma function may essentially be represented by a specialization of the KdF function in two equal variables.

[^0]0893-9659/\$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2010.03.006

2. Reduction formula

As a byproduct of efficiently deriving closed form representations for certain series due to Miller [4] Cvijović [1, equation (3.3)] employed Eqs. (1.1) and (1.3) to obtain the reduction formula for the KdF function

$$
F_{1: 1 ; 0}^{1: 2 ; 1}\left[\left.\begin{array}{ccc}
\alpha: \beta-1,1 ; & 1 \tag{2.1}\\
\beta: & \beta & ;
\end{array} \right\rvert\, z, z\right]=\frac{1}{(1-z)^{\alpha}}{ }_{3} F_{2}\left(\begin{array}{cc}
\alpha, \beta-1, \beta-1 & z \\
\beta, & \beta
\end{array}\right),
$$

where z lies in the domain $|z|<1$, and $\mathfrak{R}(z)<1 / 2$.
The KdF function has proved of practical utility in representing solutions to a wide range of problems in pure and applied mathematics and mathematical physics. See the books by Exton [2,5]; for additional examples of applications, see [6,7]. Reduction formulas such as Eq. (2.1) essentially represent the KdF function as a generalized hypergeometric function of lower order or some other function in one variable. Obviously, identifying such reductions have great value in simplifying solutions. Thus, compilations of them such as [3, pp. 28-32] and [8] are especially important, since there is no a priori way of knowing their existence.

It is the purpose here to augment the known results intimated above by showing that the formula (2.1) is a specialization of the much more general result

$$
F_{1: 1 ; 0}^{1: 2 ; 1}\left[\begin{array}{ccc}
\alpha: \beta-\epsilon, \gamma & ; \epsilon & \epsilon, z \tag{2.2}\\
\beta: \delta & ;-\mid
\end{array}\right]=\frac{1}{(1-z)^{\alpha}}{ }_{3} F_{2}\left(\begin{array}{cc}
\alpha, \beta-\epsilon, \delta-\gamma \mid & z \\
\beta, & \delta
\end{array}\right)
$$

which we derive below. Clearly, when $\gamma=1, \epsilon=1$ and $\delta=\beta$, Eq. (2.2) reduces to Eq. (2.1). Convergence for the KdF function occurs when $|z|<1$ (see [3, p. 27]); convergence for ${ }_{3} F_{2}$ function obviously occurs when $|z /(z-1)|<1$. Thus, Eqs. (2.1) and (2.2) are valid for z in the domain $|z|<1, \mathfrak{R}(z)<1 / 2$.

We recall the identity

$$
\begin{equation*}
(\alpha)_{m+n}=(\alpha)_{m}(\alpha+m)_{n} . \tag{2.3}
\end{equation*}
$$

For brevity calling the left side of Eq. (2.2) $F(z, z)$, we have upon recalling the definition of the KdF function (see Eq. (1.2)) and utilizing (2.3)

$$
\begin{aligned}
F(z, z) & =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(\alpha)_{m+n}}{(\beta)_{m+n}} \frac{(\beta-\epsilon)_{m}(\gamma)_{m}}{(\delta)_{m}}(\epsilon)_{n} \frac{z^{m}}{m!} \frac{z^{n}}{n!} \\
& =\sum_{m=0}^{\infty} \frac{(\alpha)_{m}}{(\beta)_{m}} \frac{(\beta-\epsilon)_{m}(\gamma)_{m}}{(\delta)_{m}} \frac{z^{m}}{m!} \sum_{n=0}^{\infty} \frac{(\alpha+m)_{n}(\epsilon)_{n}}{(\beta+m)_{n}} \frac{z^{n}}{n!} \\
& =\sum_{m=0}^{\infty} \frac{(\alpha)_{m}}{(\beta)_{m}} \frac{(\beta-\epsilon)_{m}(\gamma)_{m}}{(\delta)_{m}} \frac{z^{m}}{m!}{ }^{2} F_{1}\left(\left.\begin{array}{c}
\alpha+m, \epsilon \\
\beta+m
\end{array} \right\rvert\, z\right)
\end{aligned}
$$

Now, applying Euler's transformation (see e.g. [9, p. 33, equation (19)])

$$
{ }_{2} F_{1}\left(\begin{array}{c|c}
a, b & z
\end{array}\right)=\frac{1}{(1-z)^{a}}{ }_{2} F_{1}\left(\begin{array}{c|c}
a, c-b & \frac{z}{z-1}
\end{array}\right)
$$

with $a=\alpha+m, b=\epsilon$, and $c=\beta+m$ we see upon again utilizing Eq. (2.3) that

$$
\begin{aligned}
F(z, z) & =\frac{1}{(1-z)^{\alpha}} \sum_{m=0}^{\infty} \frac{(\alpha)_{m}}{(\beta)_{m}} \frac{(\beta-\epsilon)_{m}(\gamma)_{m}}{m!(\delta)_{m}}\left(\frac{z}{1-z}\right)^{m}{ }_{2} F_{1}\left(\begin{array}{c}
\alpha+m, \beta-\epsilon+m \\
\beta+m
\end{array} \frac{z}{z-1}\right) \\
& =\frac{1}{(1-z)^{\alpha}} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(\alpha)_{m}}{(\beta)_{m}} \frac{(\beta-\epsilon)_{m}(\gamma)_{m}}{m!(\delta)_{m}}\left(\frac{z}{z-1}\right)^{m+n} \frac{(-1)^{m}(\alpha+m)_{n}(\beta-\epsilon+m)_{n}}{(\beta+m)_{n} n!} \\
& =\frac{1}{(1-z)^{\alpha}} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(\alpha)_{m+n}(\beta-\epsilon)_{m+n}}{(\beta)_{m+n}} \frac{(-1)^{m}(\gamma)_{m}}{m!n!(\delta)_{m}}\left(\frac{z}{z-1}\right)^{m+n} .
\end{aligned}
$$

Assuming absolutely convergent series for an arbitrary function $B(m, n)$ by invoking series rearrangement via

$$
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} B(m, n)=\sum_{n=0}^{\infty} \sum_{m=0}^{n} B(m, n-m)
$$

we see from the latter result for $F(z, z)$ that

$$
F(z, z)=\frac{1}{(1-z)^{\alpha}} \sum_{n=0}^{\infty} \frac{(\alpha)_{n}(\beta-\epsilon)_{n}}{(\beta)_{n}}\left(\frac{z}{z-1}\right)^{n} \sum_{m=0}^{n} \frac{(-1)^{m}(\gamma)_{m}}{m!(\delta)_{m}(n-m)!}
$$

However, since $(-1)^{m} /(n-m)!=(-n)_{m} / n$!, we may write

$$
F(z, z)=\frac{1}{(1-z)^{\alpha}} \sum_{n=0}^{\infty} \frac{(\alpha)_{n}(\beta-\epsilon)_{n}}{n!(\beta)_{n}}\left(\frac{z}{z-1}\right)^{n} \sum_{m=0}^{n} \frac{(-n)_{m}(\gamma)_{m}}{m!(\delta)_{m}}
$$

Now, utilizing the Vandermonde-Chu identity (see, for instance, [9, p. 30, equation (8)])

$$
{ }_{2} F_{1}\left(\left.\begin{array}{c}
-n, a \\
b
\end{array}\right|_{1}\right)=\frac{(b-a)_{n}}{(b)_{n}}
$$

since the latter finite m-summation may be written as

$$
\sum_{m=0}^{n} \frac{(-n)_{m}(\gamma)_{m}}{m!(\delta)_{m}}={ }_{2} F_{1}\left(\left.\begin{array}{c}
-n, \gamma \\
\delta
\end{array} \right\rvert\, 1\right)
$$

we obtain finally

$$
F(z, z)=\frac{1}{(1-z)^{\alpha}} \sum_{n=0}^{\infty} \frac{(\alpha)_{n}(\beta-\epsilon)_{n}(\delta-\gamma)_{n}}{(\beta)_{n}(\delta)_{n} n!}\left(\frac{z}{z-1}\right)^{n}
$$

which is a restatement of Eq. (2.2). This completes our proof of Eq. (2.2).

Acknowledgements

The authors are very grateful to the two anonymous referees for a careful and thorough reading of the previous version of this paper. In particular, we thankfully acknowledge helpful and valuable comments and suggestions which have led to a considerably improved presentation of the results. The first author acknowledges financial support from the Ministry of Science of the Republic of Serbia under Research Projects 142025 and 144004.

References

[1] D. Cvijović, Closed-form summations of certain hypergeometric-type series containing the digamma function, J. Phys. A: Math. Theor. 41 (2008) 455205. 7pp.
[2] H. Exton, Multiple Hypergeometric Functions and Applications, Ellis Horwood, Chichester, UK, 1976.
[3] H.M. Srivastava, P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood, Chichester, UK, 1985.
[4] A.R. Miller, Summations for certain series containing the digamma function, J. Phys. A: Math. Gen. 39 (2006) 3011-3020.
[5] H. Exton, Handbook of Hypergeometric Integrals: Theory, Applications, Tables, Computer Programs, Ellis Horwood, Chichester, UK, 1978.
[6] L.U. Ancarani, G. Gasaneo, Derivatives of any order of the confluent hypergeometric function ${ }_{1} F_{1}(a, b, z)$ with respect to the parameter a or b, J. Math. Phys. 49 (2008) 063508.
[7] L.U. Ancarani, G. Gasaneo, Derivatives of any order of the Gaussian hypergeometric function ${ }_{2} F_{1}(a, b, c ; z)$ with respect to the parameters a, b and c, J. Phys. A: Math. Theor. 42 (2009) 395208. 10pp.
[8] H. Exton, E.D. Krupnikov, A Register of Computer-Oriented Reduction Identities for the Kampé de Fériet Function, Draft Manuscript, Novosibirsk Russia, 1998.
[9] H.M. Srivastava, H.L. Manocha, A Treatise on Generating Functions, Ellis Horwood, Chichester,UK, 1984.

[^0]: * Corresponding author.

 E-mail addresses: djurdje@vinca.rs (D. Cvijović), allenrm1@verizon.net (A.R. Miller).

