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Inclusive non-diffractive photoproduction of ρ(770)0, K ∗(892)0 and φ(1020) mesons is investigated
with the H1 detector in ep collisions at HERA. The corresponding average γ p centre-of-mass energy
is 210 GeV. The mesons are measured in the transverse momentum range 0.5 < pT < 7 GeV and the
rapidity range |ylab| < 1. Differential cross sections are presented as a function of transverse momentum
and rapidity, and are compared to the predictions of hadroproduction models.
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1. Introduction

High energy particle collisions, which give rise to large mul-
tiplicities of produced hadrons, provide an opportunity to study
the hadronisation process, whereby the quarks and gluons pro-
duced in the initial interaction become colourless hadrons. Since
most of these hadrons are produced at low values of transverse
momentum, perturbative quantum chromodynamics (pQCD) is not
applicable to this process, which is described instead using phe-
nomenological models, the most successful of which are the string
[1] and the cluster [2] fragmentation models. These can provide a
reasonable description of the hadronisation process provided the
many free parameters they contain are tuned to the data.

The production of long-lived hadrons and resonances at high
energies has been studied in detail in electron–positron (e+e−)
collisions at LEP using Z 0 decays [3]. Measurements in high en-
ergy hadronic interactions have so far been restricted to long-
lived hadrons and hadrons containing heavy quarks. Recently, the
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production of the hadronic resonances ρ(770)0, K ∗(892)0 and
φ(1020) has been measured in heavy-ion and proton–proton (pp)
collisions at RHIC [4]. The electron–proton (ep) collider HERA al-
lows the study of particle production in quasi-real photon–proton
(γ p) collisions. The comparison of RHIC and HERA results is of par-
ticular interest, since the nuclear density at HERA is much lower
than that at RHIC while the γ p and nucleon–nucleon collision en-
ergies are similar.

In this Letter, measurements of the inclusive non-diffractive
photoproduction of the resonances ρ(770)0, K ∗(892)0 and φ(1020)

at HERA are presented for the first time. The measurements are
based on the data recorded with the H1 detector during the year
2000, when positrons of energy 27.6 GeV collided with 920 GeV
protons at an ep centre-of-mass energy of 319 GeV, providing on
average a γ p centre-of-mass energy of 〈W 〉 = 210 GeV. The data
correspond to an integrated luminosity of L = 36.5 pb−1.

2. Phenomenology and Monte Carlo simulation

The H1 coordinate system has as its origin the position of the
nominal interaction vertex. The outgoing proton beam direction
defines the positive z-axis and is also referred to as the “forward”
direction. The polar angle θ is defined with respect to this direc-
tion. The pseudorapidity is given by ηlab = − ln(tan(θ/2)). The lab-
oratory frame rapidity ylab of a particle with energy E and longi-
tudinal momentum pz is given by ylab = 0.5 ln[(E + pz)/(E − pz)].

The invariant differential cross section for meson production
can be expressed as a function of the meson’s transverse mo-
mentum pT and its rapidity ylab, assuming azimuthal symmetry.
Hadrons produced in hadronic collisions are approximately uni-
formly distributed in the central rapidity range, while their trans-
verse momentum spectra fall steeply with increasing pT . It is con-
venient to parametrise the invariant differential cross section of
the produced hadrons with a power law distribution,

1

π

d2σγ p

dp2
T dylab

= A

(ET0 + Ekin
T )n

, (1)

where Ekin
T =

√
m2

0 + p2
T − m0 is the transverse kinetic energy,

m0 is the nominal resonance mass, A is a normalisation fac-
tor independent of pT and ET0 a free parameter. When Ekin

T �
ET0 , the power law function (1) behaves like a Boltzmann dis-
tribution exp(−Ekin

T /T ), with T = ET0/n. This exponential be-
haviour of hadronic spectra follows from a thermodynamic model
of hadroproduction [5]. In this framework, the parameter T plays
the role of the temperature at which hadronisation takes place.
At high Ekin

T , the power law originates from a convolution of the
parton densities of the colliding particles with the cross sections
of parton–parton interactions. The normalisation coefficient A is
related to the single differential cross section dσ/dylab obtained
after the integrating Eq. (1) over p2

T :

A = dσ

dylab

(n − 1)(n − 2)(ET0 )
n−1

2π(ET0 + (n − 2)m0)
. (2)

Monte Carlo calculations are used both to correct the data and
in comparisons with the measurements. Direct and resolved pho-
toproduction events are simulated using the PYTHIA [6] and the
PHOJET [7] Monte Carlo generators. In both cases, the hadroni-
sation is based on the string fragmentation model [8]. For data
corrections, the parameter settings obtained by the ALEPH Collab-
oration [9] are used for the fragmentation of partons. The effects
of Bose–Einstein correlations (BEC) on the invariant mass spectra
of like-sign and unlike-sign pion pairs are included using a Gaus-
sian parametrisation of the correlation function [9]. The photopro-
duction events generated using PYTHIA and PHOJET are passed
through the simulation of the H1 detector based on GEANT [10]
and through the same reconstruction and analysis chain as used
for the data.

3. Experimental conditions

3.1. H1 detector

The H1 detector is described in detail elsewhere [11]. A brief
account of the components that are most relevant to the present
analysis is given here.

The ep interaction region is surrounded by two large concentric
drift chambers (CJCs), operated inside a 1.16 T solenoidal mag-
netic field. Charged particles are measured in the pseudorapidity
range −1.5 < ηlab < 1.5 with a transverse momentum resolution
of σpT /pT ≈ 0.005 · pT /GeV ⊕ 0.015 [12]. The specific energy loss
dE/dx of the charged particles is measured in this detector with a
relative resolution of 7.5% for a minimum ionising track [13].

A finely segmented electromagnetic and hadronic liquid argon
calorimeter (LAr) covers the range −1.5 < ηlab < 3.4. The energy
resolution of this calorimeter is σ(E)/E = 0.11/

√
E/GeV for elec-

tromagnetic showers and σ(E)/E = 0.50/
√

E/GeV for hadrons as
measured in test beams [14].

Photoproduction events are selected with a crystal C̆erenkov
calorimeter (positron tagger) located close to the beam pipe at z =
−33.4 m, which measures the energy deposited by positrons scat-
tered at angles of less than 5 mrad. Another C̆erenkov calorimeter,
located at z = −103 m (photon tagger), is used to determine the
luminosity by measuring the rate of photons emitted in the Bethe–
Heitler process ep → epγ .

3.2. Event selection

Photoproduction events are selected by a trigger which requires
a scattered positron to be measured in the positron tagger, an
event vertex determined from charged tracks and three or more
charged tracks reconstructed in the CJCs, each with transverse mo-
mentum pT > 0.4 GeV. The photon virtuality Q 2 is smaller than
0.01 GeV2, due to the positron tagger acceptance. The photon en-
ergy is determined from the difference between the positron beam
energy and the energy measured in the positron tagger.

In order to reduce the non-ep background and to ensure good
reconstruction of the event kinematics, the following criteria are
applied:

• Events are selected if the reconstructed γ p centre-of-mass en-
ergy lies within the interval 174 < W < 256 GeV for which
good positron detection efficiency is established. This corre-
sponds to an average γ p centre-of-mass energy of 〈W 〉 =
210 GeV.

• Events are rejected if a photon with energy Eγ > 2 GeV is de-
tected in the photon tagger. This suppresses the background
arising from random coincidences of Bethe–Heitler events in
the positron tagger with beam-gas interactions in the main H1
detector.

• Events are selected if the z coordinate of the event vertex,
reconstructed using the CJCs, lies within 35 cm of the mean
position for ep interactions.

Background from elastic and diffractive events is suppressed by
the above trigger requirements. To further reduce the contribution
of diffractive processes, the presence of an energy deposit of at
least 500 MeV is required in the forward region of the LAr, de-
fined by 2.03 < ηlab < 3.26. Monte Carlo studies show that, with
this requirement, less than 1% of the final event sample consists of
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diffractive events with XP < 0.05, where XP = M2
X/W 2 and M X is

the invariant mass of the diffractive system.
In total, about 1.8 × 106 events satisfy the above selection cri-

teria.

3.3. Selection of ρ(770)0 , K ∗(892)0 and φ(1020) mesons

The mesons are identified using the ρ(770)0 → π+π− ,
K ∗(892)0 → K +π− or K̄ ∗(892)0 → K −π+ and φ(1020) → K +K −
decays.15 Charged tracks reconstructed in the CJCs with pT >

0.15 GeV and pseudorapidity |ηlab| < 1.5 are considered as charged
pion or kaon candidates. Since most of the charged particles in ep
collisions are pions, no attempt to identify pions is made, while
identification criteria for charged kaons are applied for the ex-
traction of the K ∗0 and φ signals. This is done by measuring
the momentum-dependent specific energy loss dE/dx in the CJCs.
This method gives a significant improvement in the signal-to-
background ratio for low pT mesons, pT < 1.5 GeV, where the
dE/dx resolution allows good particle identification. For high pT

mesons, pT > 1.5 GeV, the dE/dx method is inefficient and there-
fore particle identification criteria are not applied. Such tracks
are considered as both pion and kaon candidates and their four-
momenta are determined from the track measurements using the
corresponding mass hypothesis [15]. Vector meson candidates are
reconstructed from these four-momenta. The kinematic range for
the reconstructed neutral mesons is restricted to |ylab| < 1 and
pT > 0.5 GeV.

To extract the ρ0, K ∗0 and φ signals, the distributions of re-
spective invariant masses of their decay products, mπ+π− , mK ±π∓
and mK + K − , are fitted using a function composed of three parts:

F (m) = B(m) +
∑

R(m) +
∑

S(m). (3)

The terms correspond to contributions from the combinatorial
background, B(m), from reflections which result from decays other
than the signal under consideration, R(m), and from the relevant
signal, S(m), respectively.

The combinatorial background function is taken to be:

B(m) = (
a0 + a1m + a2m2 + a3m3) · B0(m),

where a0, a1, a2 and a3 are free parameters, and B0(m) is the
invariant mass distribution of the like-sign charged particle com-
binations: π±π± for the ρ0 and K ±π± for the K ∗0. The shape of
the combinatorial background for φ is described by the following
function:

B(m) = b1
(
m2 − 4m2

K

)b2 e−b3m,

where b1, b2 and b3 are free parameters and mK is the kaon mass.
The second term,

∑
R(m), in (3) represents the sum of the re-

flections; for example, charged particles from the decay K ∗0 →
K ±π∓ with the kaon misidentified as a charged pion will give rise
to structure in the mπ+π− spectrum and must be taken into ac-
count as a separate contribution. In addition, there are two other
contributions to the mπ+π− spectrum in the mass region of inter-
est. These arise from the decays ω(782) → π+π− and ω(782) →
π+π−π0 in which the π0 is not observed. For the ω(782) me-
son, the production rate relative to that of the ρ0 is varied within
the range 1.0 ± 0.2, which is consistent with measurements of the
ω(782)/ρ0 ratio in hadronic collisions [16] and in Z 0 boson de-
cays [17]. The ω(782) branching ratios are taken from [15]. The
five major reflections in the mK ±π∓ spectrum are due to: the decay
ρ0 → π+π− with the π+ or π− misidentified as a charged kaon;

15 In the following, the notation K ∗0 is used to refer to both the K ∗0 and K̄ ∗0

mesons unless explicitly stated otherwise.
the decays ω(782) → π+π− and ω(782) → π+π−π0 with the π0

not observed and with one of the π+ or π− mesons misidenti-
fied as a charged kaon; the decay φ → K +K − with one of the
kaons misidentified as a charged pion and a self-reflection from
the K ∗0, where the pion and kaon are interchanged. For the mK + K −
spectrum, there are no reflections from known resonances in the
invariant mass region of interest. Therefore, the shapes of the re-
flections are taken from Monte Carlo calculations. The contribution
of the reflections from the ρ0, K ∗0 and φ mesons is tied to the
production rates determined in this analysis and is therefore itera-
tively calculated.

The function S(m) used to describe the signal in (3) is a convo-
lution of a relativistic Breit–Wigner function BW(m) and a detector
resolution function r(m,m′). The relativistic Breit–Wigner function

BW(m) = A0
m0mΓ (m)

(m2 − m2
0)

2 + m2
0 Γ 2(m)

, (4)

is used with

Γ (m) = Γ0

(
q

q0

)2l+1 m0

m
,

where A0 is a normalisation factor, Γ0 is the resonance width,
l = 1 for vector mesons, m0 is the resonance mass, q is the mo-
mentum of the decay products in the rest frame of the parent
meson, and q0 is their momentum at m = m0. The cross sections
cited in this Letter assume that the meson signal is defined as the
integral of the relativistic Breit–Wigner function (4) in the region
±2.5Γ0 around the mass m0. Monte Carlo studies show that a non-
relativistic Breit–Wigner function with width Γres provides a good
description of the detector resolution function:

r(m,m′) = 1

2π

Γres

(m − m′)2 + (Γres/2)2
. (5)

For the K ∗0 analysis, the resolution parameter is determined
from Monte Carlo with Γres = 12 MeV. It is small compared to the
width of the K ∗0 meson (50.3 ± 0.6 MeV) [15], leading only to
a small change in the shape of the resonance. For the φ, Γres is
comparable to the width of the φ meson (Γ0 = 4.26 ± 0.05 MeV)
[15]. As a result, the shape of the φ signal is significantly changed,
and hence the detector resolution Γres is taken as a free parameter
in the fit. It is found to vary from 3.4 MeV to 6.0 MeV, increasing
with the pT of the φ meson.

For the ρ0 meson, the detector resolution is significantly
smaller than its width. However, BEC between the ρ0 decay pions
and other pions in the event strongly distort the ρ0 line shape. The
BEC plays an important role in broadening the ρ0 mass peak and
in shifting it towards lower masses. Similar effects are observed in
pp and heavy-ion collisions at RHIC [4] and in e+e− collisions at
LEP using Z 0 decays [17]. It is therefore important to check that
the Monte Carlo model used for the extraction of the cross sections
describes the di-pion spectra in the data. The data spectra and the
Monte Carlo simulations with and without BEC are shown in Fig. 1.
The Monte Carlo model with BEC is in a good agreement with the
data in the region of the ρ0 resonance, whereas the model without
BEC fails to describe the di-pion mass spectrum.

The results of fitting the function (3) to the mπ+π− data in
the mass range from 0.45 to 1.7 GeV with the contributions due
to the combinatorial background and the reflections are shown
in Fig. 2(a), and after combinatorial background subtraction in
Fig. 2(b). In this mass range, the signal from the K 0

S , f0(980) and
f2(1270) mesons is taken into account. The K 0

S signal is fitted us-
ing a Gaussian centred on the nominal mass and with fixed width.
The relativistic Breit–Wigner function given in Eq. (4) is used for
the f0(980) and f2(1270) mesons. In the fit, the resonance masses
m0 and the yields are free parameters. The ρ0 and f2(1270) widths



H1 Collaboration / Physics Letters B 673 (2009) 119–126 123
are fixed to the Particle Data Group [15] values and the f0(980)

width is fixed to 70 MeV. Due to the small signal and the non-
trivial background behaviour, which lead to large uncertainties,
cross sections for f0(980) and f2(1270) meson production are not
measured here.

The K ∗0 signal is measured under the assumption that there
is no difference between the particle and antiparticle production
rates, and the signal obtained from the mK ±π∓ spectrum is divided
by 2 to determine the K ∗0 rate in the following. The result of fit-
ting the function (3) to the mK ±π∓ data in the mass range from 0.7
to 1.2 GeV with the contributions due to the combinatorial back-

Fig. 1. The unlike-sign di-pion mass spectrum after subtracting the like-sign con-
tribution, normalised to the total number of entries. The solid and dashed curves
correspond to the PYTHIA simulation with and without Bose–Einstein correlations
(BEC), respectively.
ground and the reflections is shown in Fig. 2(c). In the fit, the K ∗0

width is fixed to the nominal value while the mass parameter is
left free. The result for the K ∗0 mass is compatible with the world
average [15].

The result of fitting function (3) to the mK + K − data in the mass
range from 0.99 to 1.06 GeV, together with the background con-
tribution, is shown in Fig. 2(d). In the fit, the φ width, Γ0, is fixed
to the nominal value while the mass is left a free parameter and
is found to be compatible with the world average [15].

3.4. Cross section determination and systematic errors

The invariant differential cross section for ρ0, K ∗0 and φ meson
production is measured in the ylab region from −1 to 1 in seven
bins in transverse momentum from 0.5 to 7 GeV. It is calculated
according to:

1

π

d2σγ p

dp2
T dylab

= N

π · L · B R · Φγ · ε · 
p2
T · 
ylab

,

where N is the number of mesons from the fit in each bin. The
corresponding bin widths are 
ylab = 2 and 
p2

T = 2pbin
T 
pT . Bin

centre corrections based on Eq. (1) are applied to define the value
of pbin

T at which the differential cross section is measured. L de-
notes the integrated luminosity and ε the efficiency. The branching
fractions B R are taken from [15] and are equal to 1, 0.67 and
0.49 for ρ0 → π+π− , K ∗0 → K ±π∓ and φ → K +K − , respectively.
The photon flux Φγ = 0.0127 is calculated using the Weizsäcker–
Williams approximation [18].
Fig. 2. The invariant mass spectra for π+π− in (a) and (b), for K ±π∓ in (c) and for K + K − in (d). The full curves show the result of the fit; the dashed curves correspond
to the contribution of the combinatorial background B(m). In (b), the data and the fit F (m) are shown after subtraction of the combinatorial background B(m); the dotted
and dash-dotted curves show the contributions from ω and K ∗ reflections, respectively. In (c), the dotted curve corresponds to the contribution of the reflections and the
dash-dotted curve corresponds to the contribution of the K ∗(892) signal. In (d), the dotted curve corresponds to the contribution of the φ(1020) signal.
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Table 1
Inclusive non-diffractive photoproduction invariant differential cross sections d2σ/π dp2

T dylab for ρ(770)0, K ∗(892)0 and φ(1020) mesons in the rapidity range |ylab| < 1.0
in bins of pT . The first error is statistical and the second systematic. For each bin in pT the range as well as the bin-centred value pbin

T are given.

pT [GeV] pbin
T

1
π

d2σ
dp2

T dylab
[nb/(GeV)2]

ρ0 (K ∗0 + K̄ ∗0)/2 φ

[0.5,0.75] 0.63 5610 ±870 ± 590 1190 ±130 ± 200 383 ± 54 ± 60
[0.75,1.0] 0.87 2440 ±180 ± 260 621 ±68 ± 80 264 ± 34 ± 37
[1.0,1.5] 1.22 680 ±55 ± 70 176 ±18 ± 21 76± 12 ± 11
[1.5,2.0] 1.72 142 ±15 ± 15 48.0 ±5.2 ± 5.1 19.1± 3.3 ± 1.9
[2.0,3.0] 2.41 29.9 ±2.3 ± 3.1 8.96 ±0.90 ± 0.98 3.48± 0.76 ± 0.34
[3.0,4.0] 3.43 3.06±0.42 ± 0.33 1.21 ±0.17 ± 0.14 0.46± 0.11 ± 0.08
[4.0,7.0] 5.09 0.276 ±0.037±0.033 0.079±0.014±0.009 0.0335± 0.0081±0.0057
Table 2
Inclusive non-diffractive photoproduction single differential cross sections dσ/dylab
for ρ(770)0, K ∗(892)0 and φ(1020) mesons in the transverse momentum range
pT > 0.5 GeV in bins of ylab . The first error is statistical and the second systematic.

ylab dσ/dylab [μb]

ρ0 (K ∗0 + K̄ ∗0)/2 φ

[−1.0,−0.5] 11.0±1.0±1.2 3.36±0.35±0.72 1.44±0.25±0.22
[−0.5,0.0] 13.1±1.1±1.4 2.52±0.27±0.36 1.08 ± 0.12 ± 0.16
[0.0,0.5] 10.4±1.5±1.1 3.07±0.30±0.44 1.44±0.13±0.22
[0.5,1.0] 14.6±1.3±1.5 4.28±0.44±0.79 1.61±0.33±0.25

The single differential cross section for ρ0, K ∗0 and φ meson
production for pT > 0.5 GeV is measured in four bins in rapidity
from −1 to 1 according to:

dσγ p

dylab
= N

L · B R · Φγ · ε · 
ylab
.

Here, the bin width is 
ylab = 0.5.
The fit procedure described in the previous section is repeated

to determine the number of mesons, N , in each measurement bin,
calculated as an integral over the signal function (4) within ±2.5Γ0
around the meson mass. Similarly, the total visible cross section for
ρ0, K ∗0 and φ meson production is measured from the number of
mesons fitted in the range |ylab| < 1 and pT > 0.5 GeV.

The efficiency is given by ε = εrec · Aetag · A3 · εtrig. The recon-
struction efficiency for the mesons, εrec, includes the geometric
acceptance and the efficiency for track reconstruction. It is calcu-
lated using Monte Carlo data and is at least 45% at low pT and
rises to about 90% with increasing pT . For the acceptance deter-
mination, the Monte Carlo generators are reweighted to model the
observed pT -dependences. The average acceptance of the positron
tagger, Aetag, is about 50%, as determined in [19]. The trigger ac-
ceptance, A3, arises from the requirement that at least three tracks
are reconstructed in the CJCs with pT > 0.4 GeV. It is determined
from Monte Carlo simulations with PYTHIA and PHOJET and varies
from 50% to 95%. The trigger efficiency, εtrig, is calculated from the
data using monitor triggers. It is about 90%. The efficiencies and
acceptances as calculated from the PYTHIA and PHOJET simulation
are found to be consistent. Small residual differences, attributed to
different track multiplicity predictions, are taken into account in
the systematic uncertainties of the measurement.

The statistical error varies from 7 to 15% for the ρ0, 10 to 18%
for the K ∗0 and 13 to 24% for the φ meson cross sections. The
systematic errors arise from the uncertainties in the track recon-
struction efficiency (4%) and the trigger efficiency (up to 6%), the
variation of the f0(980) width by ±30 MeV in the ρ0 fit (up to
7%), the uncertainties in the dE/dx kaon identification procedure
(6% for the K ∗0 and 12% for the φ) and the luminosity calculation
(2%), the variation of the background shape (5%) and the variation
of the assumptions about the normalisation of the contributions
from the reflections (4% for the ρ0 and up to 15% for the K ∗0).
The total systematic error varies from 10 to 12% for the ρ0, 11 to
21% for the K ∗0 and 10 to 17% for the φ meson cross sections.

4. Results and discussion

The inclusive non-diffractive photoproduction cross sections for
ρ0(770), K ∗0(892) and φ(1020) mesons in the kinematic region
Q 2 < 0.01 GeV2, 174 < W < 256 GeV, and for pT > 0.5 GeV and
|ylab| < 1 are found to be:

σ
γ p
vis

(
γ p → ρ0 X

) = 25600 ± 1800 ± 2700 nb,

σ
γ p
vis

(
γ p → K ∗0 X

) = 6260 ± 350 ± 860 nb,

σ
γ p
vis (γ p → φ X) = 2400 ± 180 ± 340 nb.

The first error is statistical and the second systematic. Note that
the K ∗0 cross section is the sum of the particle and antiparticle
contributions divided by 2.

The differential cross sections for the photoproduction of ρ0,
K ∗0, and φ mesons are presented in Tables 1 and 2 and in Fig. 3.
Within the rapidity range of this measurement, the resonance pro-
duction rates are constant as a function of rapidity, within errors.
The transverse momentum spectra of the ρ0, K ∗0 and φ mesons
can be parametrised by function (1), where dσ/dylab in Eq. (2)
corresponds to the average value of the cross section over cen-
tral rapidities, 〈dσ/dylab〉|ylab|<1. In the fit, the value of the power
n is fixed to be 6.7, as derived previously from measurements of
charged particle spectra by the H1 Collaboration [20] which gave
n = 6.7 ± 0.3. The power law distribution, with this value of n, de-
scribes K 0

S meson, Λ0 baryon [21] and D∗± meson production [22]
at HERA, as is shown in Fig. 4. A similar shape of the transverse
momentum distribution, but with different values of the param-
eters n and ET0 , was reported for charged particles produced in
hadronic collisions [23]. The results of the fits of the data to func-
tion (1) are shown in Fig. 3(a). In Table 3, the parameters of the
fit and the average transverse kinetic energy 〈Ekin

T 〉, the average
transverse energy 〈ET 〉 = 〈Ekin

T 〉 + m0 and the average transverse

momentum 〈pT 〉 =
√

〈ET 〉2 − m2
0 derived from (1) are presented.

The errors include the experimental uncertainty on the value of n.
Also given are the 〈pT 〉 values measured at RHIC in pp and Au–Au
collisions [4].

It is interesting to observe that the resonances with different
masses, lifetimes and strangeness content are produced with about
the same value of the average transverse kinetic energy 〈Ekin

T 〉. This
observation supports the thermodynamic picture of hadronic inter-
actions [5], in which the primary hadrons are thermalised during
the interaction. The values of 〈pT 〉 for ρ0, K ∗0 and φ mesons are
similar in γ p and pp collisions with about the same centre-of-
mass energy

√
s ≈ 200 GeV, while these values are all higher in

Au–Au collisions.
The PYTHIA and PHOJET models do not describe the shape

of the measured pT spectra. Moreover, contrary to the data, the
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Fig. 3. The inclusive differential non-diffractive cross sections for ρ0(770), K ∗0(892) and φ(1020) mesons measured in (a) as a function of transverse momentum for |ylab| < 1
and in (b) as a function of rapidity for pT > 0.5 GeV. The curves on the figure (a) correspond to the power law, Eq. (1), with n = 6.7. The ratios of data to Monte Carlo
predictions “Data/MC” are shown for the PYTHIA (full points) and PHOJET (empty points) simulations as a function of transverse momentum for |ylab| < 1 in (c) and as a
function of rapidity for pT > 0.5 GeV in (d). Statistical and systematic errors are added in quadrature.
Fig. 4. The inclusive invariant differential cross sections as a function of transverse
momentum. The curves show the results of fits to the power law, Eq. (1). Statistical
and systematic errors are added in quadrature.

Monte Carlo pT spectra are not described by the power law func-
tion (1). These observations are illustrated in Figs. 3(c) and 3(d).

The measurements in the visible kinematic range of the ρ0,
K ∗0 and φ mesons, pT > 0.5 GeV and |ylab| < 1, are extrapolated
to the full pT range using the parametrisation (1) to determine
the total inclusive non-diffractive photoproduction cross sections.
Table 3
The parameters 〈dσ/dylab〉|ylab |<1 and T = ET0 /n for ρ0, K ∗0 and φ mesons from a
fit of function (1) to the differential cross sections. The average transverse energy
〈ET 〉, kinetic energy 〈Ekin

T 〉 and momentum 〈pT 〉 are also presented. The errors cor-
respond to the quadratically summed statistical and systematic errors. Also shown
are measurements in pp and Au–Au interactions at nucleon–nucleon centre-of-mass
energy

√
sNN = 200 GeV [4] at central rapidities.

ρ0 (K ∗0 + K̄ ∗0)/2 φ

γ p (H1) 〈dσ/dylab〉|ylab |<1 [μb] 23.6±2.7 5.22±0.60 1.85±0.23
T [GeV] 0.151±0.011 0.166±0.012 0.170 ±0.012
〈ET 〉 [GeV] 1.062±0.018 1.205±0.020 1.333±0.022
〈Ekin

T 〉 [GeV] 0.287±0.018 0.313±0.020 0.314±0.022
〈pT 〉 [GeV] 0.726±0.027 0.810±0.030 0.860±0.035

pp (STAR) 〈pT 〉pp [GeV] 0.616±0.062 0.81±0.14 0.82±0.03
Au–Au (STAR) 〈pT 〉AuAu [GeV] 0.83±0.10 1.08±0.14 0.97±0.02

Table 4
The ratio R(φ/K ∗0) of the total cross sections for φ and K ∗0 production obtained
in γ p collisions (H1) at 〈W 〉 = 210 GeV. The errors correspond to the quadratically
summed statistical and systematic errors. Also shown are measurements in pp and
Au–Au interactions at nucleon–nucleon centre-of-mass energy

√
sNN = 200 GeV [4]

at central rapidities.

Experiment Measurement R(φ/K ∗0)

H1 γ p, 〈W 〉 = 210 GeV, |ylab| < 1 0.354±0.060
STAR pp,

√
s = 200 GeV, |y| < 0.5 0.35±0.05

Au–Au,
√

sNN = 200 GeV, |y| < 0.5 0.63±0.15

The extrapolation factors are of order two. In the rapidity interval
|ylab| < 1 and integrated over the full pT range the following cross
section ratios are obtained:

R
(

K ∗0/ρ0) = 0.221 ± 0.036,
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R
(
φ/ρ0) = 0.078 ± 0.013,

R
(
φ/K ∗0) = 0.354 ± 0.060.

The errors are given by the statistical and systematic errors added
in quadrature. PYTHIA and PHOJET, with the strangeness suppres-
sion factor λs = 0.286 [9], predict the ratios 0.200, 0.055 and
0.277, respectively, which are similar to the measured values, but
are all somewhat lower than these.

In Table 4, R(φ/K ∗0) is compared to the corresponding ratios
measured by STAR in pp and Au–Au collisions [4] at

√
sN N =

200 GeV. Although the rapidity ranges at the H1 and RHIC experi-
ments differ,16 the resulting ratios for pp and γ p interactions are
very close. However, the corresponding result in Au–Au collisions
is observed to be higher.

5. Conclusions

First measurements of the inclusive non-diffractive photopro-
duction of ρ(770)0, K ∗(892)0 and φ(1020) mesons at HERA are
presented. The differential cross sections for the production of
these resonances as a function of transverse momentum are de-
scribed by a power law distribution while the single differential
cross sections as a function of rapidity are observed to be flat
in the visible range. Despite their different masses, lifetimes and
strangeness content, these resonances are produced with about the
same value of the average transverse kinetic energy. This observa-
tion supports a thermodynamic picture of hadronic interactions.

The description of the shape of the ρ0 resonance produced in
γ p collisions at HERA is improved by taking Bose–Einstein correla-
tions into account. A similar effect is observed in pp and heavy-ion
collisions at RHIC and in e+e− annihilation at LEP, using Z 0 decays.

The cross section ratios R(K ∗0/ρ0), R(φ/ρ0) and R(φ/K ∗0) are
determined, and R(φ/K ∗0) is compared to results obtained in pp
and heavy-ion collisions by the STAR experiment at RHIC. The ratio
R(φ/K ∗0) measured in γ p interactions is in agreement with the
pp results, while this ratio is observed to be smaller than the result
obtained in Au–Au collisions.
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