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Abstract: Chronic social isolation (CSIS) generates two stress-related phenotypes: resilience and
susceptibility. However, the molecular mechanisms underlying CSIS resilience remain unclear. We
identified altered proteome components and biochemical pathways and processes in the prefrontal
cortex cytosolic fraction in CSIS-resilient rats compared to CSIS-susceptible and control rats using
liquid chromatography coupled with tandem mass spectrometry followed by label-free quantification
and STRING bioinformatics. A sucrose preference test was performed to distinguish rat pheno-
types. Potential predictive proteins discriminating between the CSIS-resilient and CSIS-susceptible
groups were identified using machine learning (ML) algorithms: support vector machine-based
sequential feature selection and random forest-based feature importance scores. Predominantly,
decreased levels of some glycolytic enzymes, G protein-coupled receptor proteins, the Ras subfamily
of GTPases proteins, and antioxidant proteins were found in the CSIS-resilient vs. CSIS-susceptible
groups. Altered levels of Gapdh, microtubular, cytoskeletal, and calcium-binding proteins were
identified between the two phenotypes. Increased levels of proteins involved in GABA synthesis, the
proteasome system, nitrogen metabolism, and chaperone-mediated protein folding were identified.
Predictive proteins make CSIS-resilient vs. CSIS-susceptible groups linearly separable, whereby a
100% validation accuracy was achieved by ML models. The overall ratio of significantly up- and
downregulated cytosolic proteins suggests adaptive cellular alterations as part of the stress-coping
process specific for the CSIS-resilient phenotype.

Keywords: chronic social isolation; resilience; prefrontal cortex; proteomics; machine learning
algorithms

1. Introduction

Chronic stress causes biochemical and behavioral reactions in humans, which increase
the possibility of developing Major Depressive Disorder (MDD) [1]. Of particular interest
are those stressors with a psychosocial component. One of the most commonly used
stressors is chronic social isolation (CSIS), an extension of mild chronic stress [2,3]. It is
characterized by a disconnection from other social species and a voluntary (actually or
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seemingly) withdrawal from the social environment [4]. Previous data have shown that
changes in the energy metabolism-related proteome are linked to MDD [5,6]. Moreover,
analyses of blood and urine samples from depressed individuals have revealed changes in
the levels of metabolites that regulate energy metabolism and brain function [7]. Although
some individuals are sensitive to stress and have a high risk of developing MDD in response
to mild stressors, others are resilient to stress and do not have symptoms in the face of
severe adversities [8,9]. The resilient phenotype is a phenomenon that represents a distinct
active neurobiological process and not simply the absence of vulnerability [10].

Biological differences between resilience and susceptibility to CSIS can be explored
with the help of animal models. CSIS in rats, which are separated from their social en-
vironment and lack social interaction, induces depressive-like behavior and evokes a
variety of neurochemical and neuroendocrine changes similar to those observed in de-
pressed patients [11–13]. In our previous research, the prefrontal cortex (PFC) proteome
profiling of adult male rats was used to explore altered cytosolic proteins related to CSIS-
induced depression-like behaviors compared to controls [14]. Moreover, differences in the
rat hippocampal synaptoproteome profiles between the resilient and susceptible pheno-
types toward CSIS suggest modulated physiological responses [15]. Consistent with this,
CSIS-resilient rats compared to CSIS-susceptible rats have exhibited downregulated levels
of some glycolysis enzymes along with simultaneously upregulated levels of the tricar-
boxylic acid enzyme (Aco2) and electron transport chain components (Uqcrc2, Atp5f1a,
and Atp5f1b), revealing an energy metabolic shift from glycolysis to oxidative phosphory-
lation in non-synaptic mitochondria in the rat hippocampus [16]. Also, the glutamatergic,
serotonergic, and GABA (gamma-aminobutyric acid)ergic systems in brain regions are
linked to the resilience vs. susceptibility to social stress [17].

To further investigate new molecular pathways associated with resilience toward CSIS,
non-hypothesis-driven proteomic analyses were performed to identify state-specific molec-
ular signatures. Proteomics is capable of revealing the smallest alterations in the proteome
profile of a particular condition. Machine learning (ML) algorithms can derive implicit pat-
terns from large biological datasets and have been applied to identify predictive proteins for
each condition. We applied quantitative proteomics using liquid chromatography–tandem
mass spectrometry (LC-MS/MS) analysis followed by label-free quantification and STRING
bioinformatics combined with class-separation and ML algorithms such as a support vector
machine (SVM) with sequential feature selection and random forest (RF) classifiers. The
main goal was to identify altered proteome components along with biochemical pathways
and processes as well as potential predictive proteins specific for CSIS-resilient rats rel-
ative to CSIS-susceptible and control rats by analyzing the global protein expression in
the cytosolic-enriched fraction of the PFC. We focused on the cytosol fraction, because it
is involved in a wide range of basic biochemical processes, such as glycolysis [18], the
pentose phosphate pathway [19], and protein synthesis and degradation, that control the
level of protein expression [20], signal transduction [21], stress response signaling [22],
and antioxidative enzymes [23]. We profiled differences in the cytosolic proteome using
a time course representative of the events underlying the development of resilience or
susceptibility to CSIS. PFC was chosen as a sensitive brain region to stress that participates
in cognitive processes and socio-emotional functions [24]. Moreover, a reduced volume
and dendritic spine density of the PFC have been detected in depressed patients and in
experimental animals that underwent the chronic stress paradigm [25]. In chronic stress
conditions, the PFC undergoes significant physiological changes to cope with the demands
associated with cellular activation.

Since stress resilience is a common clinical phenomenon, the inclusion of an unsuscep-
tible group to CSIS increases the usefulness of the model and provides important data for
translational resilience research. Knowledge of the neural mechanisms underlying stress
resilience may enable the successful treatment of stress-related psychiatric disorders [17].
To our knowledge, this is the first study investigating the PFC cytosolic proteome combined
with the ML-driven identification of predictive proteins for CSIS resiliency.
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2. Results
2.1. Behavioral Assessment of CSIS Rats

After the 6-week CSIS treatment, the adult male Wistar rats were divided into two
stress subtypes based on the behavioral testing data. These CSIS rats were assigned to
CSIS-susceptible (anhedonic-like) when their decrease in sucrose intake was ≥30% and
CSIS-resilient (resilient to CSIS-induced anhedonia) when their sucrose intake was not
significantly different from that of the baseline [16]. The results of the sucrose prefer-
ence test (SPT) are shown in Figure 1. Repeated ANOVA revealed a significant main
effect of CSIS (F2,42 = 15.06, p < 0.001) and significant interactions between time and CSIS
(F4,42 = 7.25, p < 0.001). The sucrose preference (SP) data showed a decrease in SP at the
end of the 3rd and 6th weeks of CSIS compared to that at the baseline (0 weeks) (* p < 0.05,
*** p < 0.001), which is indicative of anhedonic- or depressive-like behavior (CSIS-susceptible
rats). No behavioral distinction in terms of the SP at the end of the 3rd week or 6th week
compared to that at the baseline was found in the CSIS-resilient rats.
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Figure 1. Sucrose preference test (SPT) results of the control, CSIS-susceptible, and CSIS-resilient
rats at baseline (0 weeks) and after the 3rd and 6th weeks. Significant differences between groups
obtained from repeated ANOVA and post-hoc Duncan’s test are indicated as follows: CSIS-susceptible
(3 weeks) vs. CSIS (baseline), * p < 0.05; CSIS-susceptible (6 week) vs. CSIS (baseline), *** p < 0.001.
Data are expressed as the mean ± standard deviation (±SDEV), n = 8 rats per group.

2.2. Comparative Protein Analysis of the Cytosolic-Enriched Fraction of Rat PFC

In comparing the cytosolic proteomes of the CSIS-resilient and CSIS-susceptible
groups, a total of 1409 and 1090 proteins were identified and quantified, respectively.
Based on a fold change (F.C) ≤ 0.80 and FC ≥ 1.2, with an FDR-corrected p < 0.05,
a total of 367 significantly differentially expressed proteins were identified, of which
165 differential proteins were downregulated and 202 upregulated (Supplementary Table S1).
When comparing the CSIS-resilient and control groups, a total of 1389 and 1123 proteins
were identified and quantified, respectively, whereby only one upregulated protein was
found (adjusted p-value (BH) < 0.05 and FCs < 0.8 and >1.2) (Supplementary Table S2).

Principal component analysis (PCA) was performed to reflect the protein differences
among samples and the variation between samples in the group. The 2D PCA score plot
is presented in Figure 2A,B. It is defined by two principal components: PC1 (64.8%) and
PC2 (11%) for CSIS-resilient vs. CSIS-susceptible rats, and PC1 (37.4%) and PC2 (19.5%)
for the CSIS-resilient vs. control groups. The PCA results revealed that the CSIS-resilient
samples were separated from those of the CSIS-susceptible group, while the samples from
the CSIS-susceptible group were not distinguishable from the control samples. Protein
expression differences between the control rats and CSIS-treatment rats are also presented
in a volcano map (Figure 2C,D).
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Figure 2. Differential protein analysis from proteomic profiling. The identification of differentially
expressed proteins in the prefrontal cortex. Principal component analysis (PCA) of score plot between
CSIS-resilient and CSIS susceptible rats (A) and CSIS-resilient and control rats (B). Volcano plot
displaying differentially expressed proteins in the CSIS-resilient vs. CSIS-susceptible rats (C), and
CSIS-resilient vs. Control rats (D) (log (base 2), x-axis; negative false log discovery rate (p-value)
(base 10), y-axis). Upregulated proteins are indicated in red, and those downregulated, in blue.

2.3. Class-Separating Proteins

A panel of the top 15 cytosolic potential predictive proteins for discriminating CSIS-
resilient vs. CSIS-susceptible rats is presented in Table 1. All proteins obtained by class
separation are shown from the highest to the lowest score (Supplementary Table S3).

2.4. Network Analysis of Protein–Protein Interactions (PPIs)

Cytosolic predictive proteins (n = 45) discriminating CSIS-resilient vs. CSIS-susceptible
rats obtained by class separation were analyzed with the STRING 11.0 software to predict
protein–protein interaction (PPIs). The gene ontology (GO) annotation included a biological
process, molecular function, and KEGG pathway. An interactome study showed significant
interactions between proteins with an enrichment p-value of 4.88 × 10−15. At the biological
process gene ontology (GO) level, 14 biological processes were found, whereby predictive
proteins were mostly involved in protein folding (GO:0006457), the response to nitrogen
(GO:1901698), and oxygen-containing compounds (GO:1901701). The most affected molec-
ular functions (n = 26) were G protein-coupled receptor binding (GO:0001664), GDP/GTP
binding (GO:0019003, GO:0005525), and signaling receptor binding (GO:0005102). KEGG
pathway enrichment (n = 58) indicated that the identified proteins are mainly involved in
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tyrosine metabolism (rno00350), the serotonergic synapse (rno04726), GABAergic synapses
(rno04727), the cAMP signaling pathway (rno04024), carbon metabolism (rno01200), and
glutamatergic synapses (rno04724) (Figure 3).

Table 1. List of top 15 cytosolic proteins discriminating the CSIS-resilient vs. CSIS-susceptible groups
with FC (fold change) by class separation.

Protein ID Protein Gene FC

Q64537 Calpain small subunit 1 Capns1 3.15
P62898 Cytochrome c, somatic Cycs 0.38

B2RYW9 Fumarylacetoacetate hydrolase domain-containing protein 2 Fahd2 0.42
P10824 Guanine nucleotide-binding protein G(i) subunit alpha-1 Gnai1 0.36
P05065 Fructose-bisphosphate aldolase A Aldoa 0.55
P14408 Fumarate hydratase, mitochondrial Fh 0.34
P59215 Guanine nucleotide-binding protein G(o) subunit alpha Gnao1 0.36

Q9QVC8 Peptidyl-prolyl cis-trans isomerase FKBP4 Fkbp4 0.75
P06761 Endoplasmatic reticulum chaperone BiP Hspa5 0.41
Q62636 Ras-related protein Rap-1b Rap1b 0.33
P60203 Myelin proteolipid protein Plp1 0.06
P31232 Transgelin Tagln 0.57
P13596 Neural cell adhesion molecule 1 Ncam1 0.35
P52555 Endoplasmic reticulum resident protein 29 Erp29 0.50
P06687 Sodium/potassium-transporting ATPase subunit alpha-3 Atp1a3 0.04
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Figure 3. Schematic representation of protein–protein interactions (PPIs) among cytosolic potential
predictive proteins between CSIS-resilient and CSIS-susceptible rats, including proteins involved
in the glutamatergic synapse KEEG pathway represented in blue. Gnaq—Guanine nucleotide-
binding protein G(q) subunit alpha; Gnai2—Guanine nucleotide-binding protein G(i) subunit alpha-2;
Gnao1—Guanine nucleotide-binding protein G(o) subunit alpha; Gnai1—Guanine nucleotide-binding
protein G(i) subunit alpha-1.

2.5. SVM with Greedy Forward Search and RF Classification

Common cytosolic predictive proteins for classifying CSIS-resilient vs. CSIS-susceptible
rats using SVM-based sequential feature selection and an RF are presented in Table 2. Po-
tential predictive proteins are ranked by the number of times they were selected in the
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100 repetitions. The full list of predictive proteins obtained through these classifications is
presented in Supplementary Tables S4 and S5.

Table 2. List of cytosolic potential predictive proteins for classifying CSIS-resilient vs. CSIS-susceptible
rats identified through SVM-based sequential feature selection and RF importance scores only for
those proteins ranked by the number of selections in the 100 repetitions; FC—fold change. Blank
cells correspond to proteins not identified as informative by the RF-based procedure in any of the
100 repetitions.

Protein IDs Protein Gene SVM
Score

SVM
Score
SDEV

Times Selected
by SVM RF Score RF Score

SDEV
Times

Selected by RF FC

P61980 Heterogeneous nuclear
ribonucleoprotein K Hnrnpk 0.738 0.380 17 0.020 0.008 38 1.39

Q641X8 Eukaryotic translation initiation
factor 3 subunit E Eif3e 0.946 0.010 12 0.017 0.007 47 1.82

P47819 Glial fibrillary acidic protein Gfap 0.948 0.010 10 0.015 0.003 18 3.85

P35332 Hippocalcin-like protein 4 Hpcal4 0.943 0.012 10 0.016 0.004 19 1.88

P25093 Fumarylacetoacetase Fah 0.949 0.008 7 0.015 0.003 22 0.46

P54313
Guanine nucleotide-binding
protein G(I)/G(S)/G(T)
subunit beta-2

Gnb2 0.946 0.011 7 0.016 0.005 24 0.47

P42676 Neurolysin, mitochondrial Nln 0.816 0.314 7 0.016 0.006 35 0.62

P54290 Voltage-dependent calcium
channel subunit alpha-2/delta-1 Cacna2d1 0.051 0.008 7 0.016 0.004 31 0.26

Q794E4 Heterogeneous nuclear
ribonucleoprotein F Hnrnpf 0.500 0.452 6 0.017 0.007 30 1.37

Q6NYB7 Ras-related protein Rab-1A Rab1A 0.952 0.000 5 0.017 0.007 30 0.50

Q1HCL7 NAD kinase 2, mitochondrial Nadk2 0.948 0.010 5 0.016 0.004 21 0.53

P62994 Growth factor receptor-bound
protein 2 Grb2 0.062 0.012 5 0.017 0.008 11 1.43

P84076
Neuron-specific
calcium-binding protein
hippocalcin

Hpca 0.052 0.010 5 1.48

O35180 Endophilin-A3 Sh3gl3 0.052 0.010 5 1.39

Q80Z29 Nicotinamide phosphoribosyl
transferase Nampt 0.952 0.000 4 0.016 0.004 19 0.78

Q68FY0 Cytochrome b-c1 complex
subunit 1, mitochondrial Uqcrc1 0.952 0.000 4 0.016 0.004 19 0.34

P01830 Thy-1 membrane glycoprotein Thy1 0.280 0.388 4 0.018 0.006 29 0.14

Q6P686 Osteoclast-stimulating factor 1 Ostf1 0.054 0.010 4 0.53

Q5FVI6 V-type proton ATPase subunit C
1 Atp6v1c1 0.054 0.010 4 0.74

P07340
Sodium/potassium-
transporting ATPase subunit
beta-1

Atp1b1 0.054 0.010 4 0.09

Q704S8 Carnitine O-acetyltransferase Crat 0.048 0.000 4 0.71

P32736 Opioid-binding protein/cell
adhesion molecule Opcml 0.048 0.000 4 0.017 0.007 27 0.33

Q62703 Reticulocalbin-2 Rcn2 0.944 0.011 3 0.018 0.007 38 0.51

P70566 Tropomodulin-2 Tmod2 0.056 0.011 3 0.017 0.007 38 1.90

Q66X93 Staphylococcal nuclease
domain-containing protein 1 Snd1 0.048 0.000 3 0.79

Q9QXQ0 Alpha-actinin-4 Actn4 0.952 0.000 2 0.015 0.003 20 1.47

P47858
ATP-dependent
6-phosphofructokinase,
muscle type

Pfkm 0.952 0.000 2 0.016 0.007 20 1.38
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Table 2. Cont.

Protein IDs Protein Gene SVM
Score

SVM
Score
SDEV

Times Selected
by SVM RF Score RF Score

SDEV
Times

Selected by RF FC

P13233 2,3-cyclic-nucleotide
3-phosphodiesterase Cnp 0.940 0.012 2 0.016 0.006 28 0.52

P31977 Ezrin Ezr 0.500 0.452 2 0.018 0.009 32 0.65

Q6PEC4 S-phase kinase-associated
protein 1 Skp1 0.060 0.012 2 0.015 0.004 15 1.30

Q80U96 Exportin-1 Xpo1 0.060 0.012 2 0.019 0.011 20 1.81

Q6PDU1 Serine/arginine-rich splicing
factor 2 Srsf2 0.048 0.000 2 1.49

Q812E9 Neuronal membrane
glycoprotein M6-a Gpm6a 0.048 0.000 2 0.017 0.006 18 0.21

Q5PPJ9 Endophilin-B2 Sh3glb2 0.952 0.000 1 0.016 0.005 16 1.58

Q9JLZ1 Glutaredoxin-3 Glrx3 0.952 0.000 1 0.016 0.005 26 1.51

P10536 Ras-related protein Rab-1B Rab1b 0.952 0.000 1 0.016 0.004 34 0.63

Q923W4 Hepatoma-derived growth
factor-related protein 3 Hdgfrp3 0.071 0.000 1 1.44

Q8K4V4 Sorting nexin-27 Snx27 0.071 0.000 1 0.017 0.006 5 1.33

Q62813 Limbic system-associated
membrane protein Lsamp 0.071 0.000 1 0.017 0.005 12 0.39

Q63617 Hypoxia up-regulated protein 1 Hyou1 0.071 0.000 1 0.018 0.007 40 0.38

P18297 Sepiapterin reductase Spr 0.048 0.000 1 0.72

P05712 Ras-related protein Rab-2A Rab2a 0.048 0.000 1 0.68

Q03346 Mitochondrial-processing
peptidase subunit beta Pmpcb 0.048 0.000 1 0.017 0.007 25 0.68

Q9JIX3 Bis(5-adenosyl)-triphosphatase Fhit 0.048 0.000 1 0.67

P04762 Catalase Cat 0.048 0.000 1 0.62

Q5EB77 Ras-related protein Rab-18 Rab18 0.048 0.000 1 0.59

P04041 Glutathione peroxidase 1 Gpx1 0.048 0.000 1 0.58

P11598 Protein disulfide-isomerase A3 Pdia3 0.048 0.000 1 0.019 0.007 10 0.55

Q4V7C6 GMP synthase
[glutamine-hydrolyzing] Gmps 0.048 0.000 1 1.31

Q62718 Neurotrimin Ntm 0.048 0.000 1 0.49

O35346 Focal adhesion kinase 1 Ptk2 0.048 0.000 1 0.016 0.004 19 1.29

F1LMZ8 26S proteasome non-ATPase
regulatory subunit 11 Psmd11 0.048 0.000 1 0.016 0.004 11 1.96

P31044 Phosphatidylethanolamine-
binding protein 1 Pebp1 0.048 0.000 1 0.80

Q91ZN1 Coronin-1A Coro1a 0.048 0.000 1 0.018 0.006 4 0.79

O35952 Hydroxyacylglutathione
hydrolase, mitochondrial Hagh 0.048 0.000 1 0.76

P22734 Catechol O-methyltransferase Comt 0.048 0.000 1 0.76

O35964 Endophilin-A2 Sh3gl1 0.048 0.000 1 0.015 0.003 19 1.66

P85968
6-phosphogluconate
dehydrogenase,
decarboxylating

Pgd 0.048 0.000 1 0.73

3. Discussion

This study identified altered proteome components and biochemical pathways and
processes in the PFC cytosolic-enriched fraction in CSIS-resilient rats compared to CSIS-
susceptible and control rats. The identification of potential predictive proteins was per-
formed using class separators. Additional predictive proteins were identified through an
SVM-based sequential feature selection and RF-based feature importance.

CSIS-resilient rats displayed behavioral differences in terms of SP when compared to
the CSIS-susceptible group and showed significant cytosolic proteome changes. Among
the identified proteins, reduced levels of proteins involved in glycolytic and pyruvate
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metabolic processes, such as Hk1, Aldoa, Aldoc, Pgk1, Pkm, and Ldhb, were found in
CSIS-resilient rats compared to CSIS-susceptible rats. Pkm is a glycolytic enzyme that
converts phosphoenolpyruvate to pyruvate in a reversible reaction at the endpoint of
the glycolytic pathway, and its modulation determines the glucose flux. Its decreased
levels probably reduce the glycolytic flux, leading to a reduction in the production of
pyruvate. The same trend was observed for Ldhb, which catalyzes the reversible conver-
sion of pyruvate to lactate as well as NAD+ to NADH. Accordingly, Hk1, Aldoa, Aldoc,
and Pgk1 suggest the already-mentioned decreased energy demands of CSIS-resilient
rats. These data are in line with our previous study’s results showing a decline in glucose
metabolism in the hippocampus of CSIS-resilient rats [16]. Conversely, abnormal brain
energy metabolism has been found to be a contributing factor for MDD. Pkm and Ldh
were significantly upregulated in the cerebella from chronic, mildly stressed rats, indicating
an activated glycolytic process [26]. A proteomic study on the hypothalamus samples of
CUMS mice showed an upregulation in Hk1 [27]. Decreased levels of Hk1 and Aldoa in
the current study were also identified as potential predictive proteins contributing to the
CSIS resiliency designation by the RF or class separation. Accordingly, HK1 and Aldo
may be potential treatment targets. Interestingly, increased levels of the multifunctional
protein Gapdh (Supplementary Table S1) were observed in CSIS-resilient rats. A previous
proteomic study with the cerebrospinal fluid of a monkey model of depression and MDD
patients, indicated a downregulated Gapdh expression [28]. Apart from its key role in
glycolysis [29], Gapdh also displays activities related to the regulation of microtubule
binding and cytoskeletal dynamics, the modulation of the calcium current component of
AMPARs, and inositol trisphosphate (IP3) receptors [30]. Moreover, its pathological or
physiological function depends on post-translational modifications [31]. Indeed, we found
an upregulation in microtubule-associated proteins (Map6, Map2, Map1b, Map4, Map1a),
cytoskeleton organization (Tubb4b, Tuba1a, Tubb2s, Tubb3 Tubb2b, Tuba4a, Tubb5) and
calcium/calmodulin-dependent protein kinase (Camk1, Camkk1, Camk4, Camkv, Camkk2).
The upregulation in the cytoskeletal microtubular system may imply increased microtubule
dynamics. Increased levels of calcium binding proteins likely enable compensation for
increased calcium fluxes within neurons in the PFC. Also, Tubb3 and Camkk2 were identi-
fied as potential predictive proteins according to the RF. In addition, an increased level of
Exportin-1, a protein responsible for nuclear protein export, which is also associated with
Gapdh translocation [32], was found. The upregulations in these proteins in CSIS-resilient
rats likely reflect a positive molecular path for coping with the CSIS.

Decreased levels of Gnai1 and Gnai2 proteins, which participate in the G protein-
coupled receptor, were also identified as predictive proteins via class separation. More-
over, these differentially expressed proteins are involved in different KEGG pathways
(Figure 3). Given that the phosphatidylinositol signaling system mainly comprises recep-
tors and G proteins, the lower levels of Gnai1 and Gnai2 in CSIS-resilient rats compared
to CSIS-susceptible rats may contribute to an altered phosphatidylinositol signaling path-
way. In support of this, downregulated Impa1, responsible for the production of inositol
and essential for the synthesis of phosphatidylinositol, was found. Moreover, a recent
metabolomic study demonstrated increased levels of the components of phosphatidyli-
nositol, such as myo-inositol, following CSIS (referred to as CSIS-susceptible rats) in the
PFC as one of the most interesting variables for stratifying CSIS-susceptible vs. control
rats [33]. Downregulated proteins involved in the Ras subfamily of GTPases, such as Rap1b,
Rab1A, Rab2a, and Rab1b, were identified as predictive proteins using ML algorithms. As
these proteins are involved in membrane trafficking, neurotransmitter release, and signal
transduction [34], their downregulation may cause a decrease in neuronal vesicular cell
trafficking. We also identified the downregulation of Cycs, which was found as a predictive
protein via class separation. We recently reported an increase in cytochrome c levels in
the cytosol of the PFC in CSIS-susceptible rats [14], which may suggest a compromised
mitochondrial membrane integrity and its concomitant release from mitochondria into
the cytosol. Moreover, two class-separated predictive proteins, Ncam and Capns, with
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opposite expression differences were found in the CSIS-resilient rats compared to the CSIS-
susceptible rats. Ncam, as a cell surface communication protein, is known to participate in
the formation of neuronal networks in the brain [35]. Its lower abundance may indicate
perturbed cell-to-cell interactions, including alterations in the synaptic plasticity processes.
Contrary to this, cytosolic calcium-dependent proteases, such as Capns, were upregulated.
Capns is involved in synaptic plasticity through the regulation of protein targets and signal-
ing pathways, with important roles in long-term potentiation [36]. Its increased abundance
might indicate a neuronal protection mechanism as part of a stress-coping process specific
for the CSIS-resilient phenotype.

The energy metabolism of neurons and astrocytes is related to the synthesis and
metabolism of glutamate and GABA, as excitatory and inhibitory neurotransmitters of
the brain, respectively [37]. The biosynthesis and turnover of glutamate and GABA are
largely dependent on astrocytes, since they are the only cells expressing enzymes required
for the de novo synthesis of the two amino acids. Here, we identified increased levels of
Glul in CSIS-resilient vs. CSIS-susceptible rats. Given that this enzyme converts glutamate
and ammonia to glutamine in astrocytes [38], we can assume that upregulating Glul in
cells counteracts the cytotoxicity of this neurotransmitter. Moreover, the upregulation of
predictive protein Gfap (SVM-based sequential feature selection), an astrocyte-specific
cytoskeletal protein involved in the regulation of glutamate transporter trafficking and
function, may indicate increased glutamate levels in the brain. Gfap has been found to
promote glutamate aspartate transporter association with the plasma membrane by form-
ing a complex with the cytoskeleton-associated linker protein ezrin [39], also found as a
predictive protein. These results point to the glutamate-modulating role of astrocytes as
being important for CSIS resilience Clinical studies have found reduced Gfap levels in
depressed subjects in cortical regions [40], and in a chronic mild stress-anhedonic group
compared to a resilient group [41]. Moreover, glial loss may, in part, underlie the cognitive
symptoms of depression, pointing to a glial pathology hypothesis of depression [42]. In ad-
dition, increased levels of Gad1 and Gad2, which regulate GABA synthesis from glutamate,
probably contributed to the normalization of GABA- and glutamate-mediated neurotrans-
mission and were deregulated in CSIS-susceptible rats. Reduced GABA neurotransmission
has been observed in MDD patients [43]. We previously reported the dysfunction in the
GABAergic system in the PFC, specifically of the parvalbumin-expressing interneurons, as
a response to CSIS exposure [44].

Proteins that were upregulated in CSIS-resilient vs. CSIS-susceptible rats were related
to proteasome systems. Given that the proteasome system is responsible for the degra-
dation of short-lived, misfolded, and damaged proteins, we presume that upregulated
proteasome components, such as Psmb9, Psmb2, Psmb13, Psmb1, and Psmb11, prevent
the accumulation of misfolded and modified proteins. Our previous PFC subproteome of
CSIS-susceptible rats compared to control rats showed decreased levels of the cytosolic
proteins involved in the proteasome system [14]. Observed differences in the proteasome’s
protein levels may be explained by a higher turnover of cytosolic proteins in CSIS-resilient
rats compared to CSIS-susceptible rats. Changes in the levels of several regulatory proteins
indicate the modulation of cell signaling pathways. Hence, upregulated protein levels of
potential predictive Rab18 (SVM-based sequential feature selection) and Arfgap1 stimulate
the process of intracellular membrane trafficking. Among the interesting differentially
upregulated proteins were heat shock proteins Hspa2 and Hsph1, which were found as
potential predictive proteins through the RF. They ensure the correct folding and re-folding
of misfolded proteins, indicating the increased dynamics and expressions of proteins.
However, potential predictive chaperones with the same role, such as Hspa5, Hspa9, and
Hsp90b1 (via class separation or FR), as well as Fkbp4, showed a lower abundance in
CSIS-resilient vs. CSIS-susceptible rats. This result implicates the redirection of heat shock
proteins to increased levels of Hspa2 and Hspb1 toward resisting the adverse effects of
CSIS. Nonetheless, the lower abundances of potential predictive proteins Cat and Gpx1 via
SVM-based sequential feature selection, involved in the antioxidative system, may suggest
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that CSIS-resilient rats are less challenged by oxidative stress. Given that Cat and Gpx1
maintain cellular redox balance by regulating reactive oxygen species levels, these proteins
may be potential MDD therapeutic targets. Regarding CSIS-resilient compared to control
rats, only minor proteome changes were observed. Upregulation was observed for Fah,
the enzyme that catalyzes the last step of tyrosine catabolism. In addition, this protein was
downregulated in CSIS-resilient rats compared to CSIS-susceptible rats. The perturbation
of Fah protein levels is likely due to physiological conditions related to CSIS. We submit
that predictive proteins identified with ML algorithms based on proteomic PFC data are
able to delineate subjects resilient vs. susceptible to CSIS. Moreover, the predictive proteins
of stress resilience may provide information about susceptibility to psychosocial stress [45]
and provide new strategies for the prevention and treatment of MDD.

4. Materials and Methods
4.1. Animals

We used adult male Wistar rats (2.5 months of age, 300–350 g in body weight) bred
at the Animal Facility of the “VINČA” Institute of Nuclear Sciences, National Institute
of the Republic of Serbia, University of Belgrade. The rats were kept under standard
conditions in groups of up to four per cage with a 12 h light/dark cycle, a temperature of
20 ± 2 ◦C, a humidity level of 55 ± 10%, and free access to food and water ad libitum. All
experimental procedures were approved by the Ethical Committee for the Use of Laboratory
Animals of the “VINČA” Institute of Nuclear Sciences, National Institute of the Republic of
Serbia, University of Belgrade, which follows the guidelines of the EU-registered Serbian
Laboratory Animal Science Association (SLASA). The study protocol was approved by the
Ministry of Agriculture, Forestry, and Water Management—Veterinary Directorate, ethics
committee, license numbers 323-07-01893/2015-05 and 323-07-02256/2019-05.

4.2. Study Design

At the onset of the experiment, rats were randomly divided into control rats, which
were housed in groups of four animals per cage, and rats that underwent CSIS for six weeks,
which were housed individually in a cage and deprived of any visual or tactile contact
with other animals, but had normal auditory and olfactory experiences [46]. Following
the six-week period of CSIS, the rats were designated CSIS-resilient and CSIS-susceptible
based on their performance in the SPT, as previously described [16] (Figure 4).
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Sucrose Preference Test (SPT)

The SPT was employed to segregate CSIS-resilient and CSIS-susceptible rats, according
to the method described previously [16]. The rats were placed into separate cages and
two pre-weighed bottles, one containing tap water and the other containing a 2% sucrose
solution, were placed on each cage. We measured the percentage preference of the rats
for 2% sucrose solution compared to tap water after 1 h. A decline in SP was indicative of
anhedonia or a decreased ability to experience pleasure, a major symptom of depression [47].



Int. J. Mol. Sci. 2024, 25, 3026 11 of 16

The test was conducted prior to the start (baseline, week 0) and at the end of the 3rd and
6th weeks.

4.3. Isolation of PFC Cytosolic-Enriched Fractions

Once behavioral tests were completed, the control (n = 8), CSIS-susceptible (n = 8),
and CSIS-resilient (n = 8) rats were anesthetized with intraperitoneal injections of ke-
tamine/xylazine (100/10 mg/kg) (Richter Pharma AG, Wels, Austria/Bioveta, Ivanovice
na Hane, Czech Republic), perfused with physiological saline, and sacrificed via guillotine
(Harvard Apparatus, South Natick, MA, USA) decapitation. The brain was removed,
and the PFC excised on ice, shock-frozen in liquid nitrogen, and stored at −80 ◦C until
further analyses. To obtain cytosolic-enriched fractions, the PFC was homogenized in
1 mL of cold homogenization buffer (10 mM Tris/HCl (SERVA) pH 7.4, 0.25 M sucrose
(Thermo Fisher Scientific, Waltham, MA, USA) containing a protease inhibitor cocktail
tablet (cOmplete™, EDTA-free Protease Inhibitor Cocktail No 4693132001) [14]. Homog-
enization was performed in a Potter–Elvehjem homogenizer (800 rpm, 12 up-and-down
passes). Homogenates were centrifuged at 1000× g for 10 min to obtain the crude nu-
clear pellet (P1) and the supernatant (S1). The S1 fraction was again centrifuged under
the same conditions for the removal of the remaining nuclei. The obtained supernatant
was then centrifuged for 15 min at 17,000× g to obtain the crude mitochondrial fraction
(P2 pellet), and supernatant S2 was centrifuged at 100,000× g at 4 ◦C for 60 min to ob-
tain cytosolic-enriched fractions. Protein concentrations were measured using the Lowry
method [48] and the bicinchoninic acid method (Pierce™ BCA Protein Assay Kit, Thermo
Scientific, Waltham, MA, USA), using purified BSA (Sigma-Aldrich, Munich, Germany)
as a standard. The relative purity of isolated cytosolic-enriched fractions was confirmed
by the absence of nuclear/mitochondrial contaminants of the cytosolic fractions after the
incubation of control samples with antibody against nuclear (anti-TATA binding protein),
cytosolic (anti-α tubulin), and mitochondrial (anti-voltage-dependent anion channel 1)
proteins, as described in our previous study [14].

4.4. Enzymatic Digestion of Proteins and Liquid Chromatography Coupled with Tandem Mass
Spectrometry Analysis (LC-MS/MS)

The cytosolic proteins were digested following the filter-aided sample preparation
method [49] with minor modifications, as described previously [14]. Briefly, 20 µg of protein
from cytosolic-enriched fractions was diluted with urea buffer (8 M urea, 100 mM Tris-HCl
pH 8.5) (Sigma-Aldrich, Munich, Germany) to a total volume of 100 µL containing 5 µL
of 0.1 M DTT (final concentration, 5 mM), transferred to a Microcon YM-30 filter device
(Merck Millipore, Darmstadt, Germany), incubated for 1 h at 37 ◦C in a thermo-mixer
(300 rpm) and centrifuged at 14,000× g for 15 min at room temperature (RT). Then, 100 µL
of urea solution was added to the samples and centrifuged for 15 min, and this step was
repeated three times. Then, 100 µL of urea buffer containing 5.25 µL of iodoacetamide
(IAA) (Sigma-Aldrich, Munich, Germany) (final concentration, 10 mM) was added onto the
filter. The samples were incubated for 45 min at 24 ◦C in the dark with mixing (300 rpm)
and centrifuging for 15 min at 14,000× g at RT. Next, the samples were washed three times
with 150 µL 100 mM triethylammonium bicarbonate (TEAB), pH 8.5 (dissolution buffer)
(Thermo Scientific, Waltham, MA, USA). Proteins were digested overnight at 37 ◦C in
150 µL 100 mM TEAB with 0.5 µg trypsin (Trypsin Premium Grade) (trypsin-to-protein
ratio = 1:50) (Serva). Peptides were centrifuged for 15 min at 14,000× g and washed with
150 µL of dissolution buffer. The reaction was terminated by adding 1 µL of formic acid (FA)
(Thermo Fisher Scientific, Waltham, MA, USA) to the 100 µL solution, and the samples were
desalted with Pierce C18 10 µL tips (Thermo Scientific, Sunnyvale, CA, USA) following
the manufacturer’s instructions and dried in a speed-vac. The peptides resuspended in
0.1% FA were analyzed via LC-MS/MS using a Dionex Ultimate 3000 RSLC nano UPLC
(Thermo Fisher Scientific, Waltham, MA, USA) system coupled to a Q Exactive Plus mass
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA), as previously published [14].
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All m/z values of the eluting precursor ions were measured in an Orbitrap mass analyzer,
set at a resolution of 70,000. Data-dependent scans (Top 10) were employed to automatically
isolate and generate fragment ions via high energy collision dissociation (HCD) in the
quadrupole mass analyzer. The resulting fragment ions were measured in the Orbitrap
analyzer, set at a resolution of 17,500. Peptide ions with charge states of 2+ to 4+ were
selected for fragmentation [50].

4.5. Data Processing for Label-Free Quantification

The mass spectrometry raw data were analyzed with MaxQuant, version 1.6.3.4 [51,52].
For identification, the rat reference proteome from UniProt (downloaded 22 December
2020) was used as a reference database. Enzyme specificity was set to trypsin, allowing
N-terminal cleavage before proline. Variable modifications were set to the oxidation of
methionine residues and acetylation of protein N termini, whereas the carbamidomethy-
lation of cysteine residues was set as a fixed modification. A maximum of two missed
cleavages was allowed. A false discovery rate (FDR) of 1% was used for peptide and
protein identification. Peptide identification was based on a search with an initial mass
deviation of the precursor ion of up to 10 ppm. The fragment mass tolerance was set to
0.1 Da on the m/z scale. Only proteins identified with at least two peptides were considered
for relative quantification. The mass spectrometry proteomics data were deposited to the
ProteomeXchangeConsortium through the PRIDE [53] partner repository with the dataset
identifier PXD048641.

4.6. Statistical and Bioinformatic Analysis

The statistical significance of the mass spectrometry label free data was determined
using a two-tailed unpaired t-test followed by an appropriate false-discovery rate (FDR
q < 0.05) correction using the Benjamin–Hochberg method. Only proteins showing protein
FC greater than or equal to 1.2 (F.C. ≥ 1.2) or less than or equal to 0.80 (F.C ≤ 0.80), and
a p value < 0.05 and FDR < 0.05 were considered differentially expressed. Proteins and
peptides identified according to only one peptide match and/or one unique peptide were
excluded from the bioinformatic analysis. The STRING online tool (https://string-db.org/),
accessed on 25 December 2023, was used to identify protein–protein interaction networks on
potential predictive proteins between CSIS-resilient and CSIS-susceptible rats according to
their UniProtKB accession numbers, and to define biological processes, molecular functions,
and KEGG pathways.

4.7. Feature Selection with SVM and RF Algorithms

We interpreted the label-free mass spectrometry data as features and defined a clas-
sification task for discriminating between CSIS-resilient and CSUS-susceptible rats. Any
missing values were replaced using the non-missing values of that same feature. Each fea-
ture was standardized by subtracting the mean and scaling to unit variance. We then
used two machine learning-based procedures for estimating the predictive power of
each feature: (1) sequential feature selection (also known as greedy forward search) and
(2) feature importance scores produced as a side-result of training an RF.

In sequential feature selection (SFS), we started with an empty set and added, one
by one, features that result in a classifier with the highest cross-validation accuracy [54].
We employed stratified 7-fold cross-validation to evaluate the classifier performance. The
procedure of adding new members into the set of already selected features was repeated
until reaching a 100% validation accuracy or when adding new features did not improve
the cross-validation accuracy score. The score of a feature was defined as the increase in the
cross-validation accuracy brought about by adding that feature into the set of predictors
used by the classifier. To break the dependence of our results on the arbitrary ordering of
features, we repeated the entire procedure 100 times, randomly shuffling the order in which
the features were evaluated in each repetition. We also changed the random seed used
to control the distribution of examples over the cross-validation folds in each repetition.

https://string-db.org/
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We used a support vector machine [55] with a linear kernel and L1 regularization as the
base learner.

The described SFS procedure is of limited use if the dataset contains features that
enable perfect classification on their own. We defined a feature as class-separating if its
lowest value among all examples of one class was higher than its largest value in the other
class. For example, the highest intensity value for protein Q64537 in the CSIS-susceptible
group was 10,153,000, while the lowest value for that same protein among the CSIS-resilient
individuals was 17,733,000. In other words, the values for Q64537 were much lower for
all individuals from the CSIS-susceptible group than for any individual from the CSIS-
susceptible group. For such features, the SFS procedure stops after the first iteration, having
achieved a 100% validation accuracy by selecting a class-separating feature. To avoid a
situation where class-separating features mask other informative, non-class-separating
features, we removed the class-separating features from consideration prior to running
the SFS procedure. The score of a class-separating feature was computed as the absolute
difference between the two nearest (standardized) values corresponding to different classes.

A RF is an ensembles of decision trees, each trained on a bootstrapped dataset using
the random subspace method [56]. Each node of a tree is a thresholding test on the value
of a single feature. Such tests split the training examples into two groups, which are
evaluated in terms of the Gini impurity of the corresponding class labels (if all examples
in the group belong to the same class, that group has minimal impurity). To define a
single node, we chose a random subset of features (a random subspace) and selected the
feature that results in the biggest decrease of impurity. In addition, the average reduction
in impurity for a single feature represents a measure of its informativeness. We used these
measures as scores to define a ranking of features based on their predictive power for the
classification task at hand. We repeated the procedure 100 times, with different seeds for
the random number generator that controls the random subspace selection process. We
selected the hyper-parameters of our RF by maximizing the out-of-bag (OOB) score, which
is a commonly used proxy for validation accuracy [56].

Our code was written in the Python programming language. We implemented the
procedure for identifying the class-separating features ourselves and used the scikit-learn
library [57] for the training of the SVM and RF classifiers.

5. Conclusions

We profiled PFC cytosolic proteome changes in CSIS-resilient rats compared to CSIS-
susceptible and control rats, providing new insights into the dynamic molecular mecha-
nisms of CSIS resilience. We identified potential predictive proteins that can distinguish the
two groups using class separation, SVM-based sequential feature selection, and RF-based
feature importance algorithms. Among the different proteomic profilings observed, the
glycolysis may be specifically involved in defining resilience to CSIS. Decreased levels
of some glycolytic enzymes likely provide less energy in CSIS-resilient rats compared
to CSIS-susceptible rats, leading to a reduction in the production of pyruvate, which is
consistent with the lower abundance of Pkm and Ldhb proteins. Reductions in the levels
of the G protein-coupled receptor, Ras subfamily of GTPases, and antioxidative system
were also found in CSIS-resilient vs. CSIS susceptible rats. Conversely, increased levels
of Gapdh and proteins involved in microtubule and cytoskeletal organization, calcium-
binding proteins, glutamate and GABA metabolic processes, the proteasome system, and
chaperone-mediated protein folding were identified between the two phenotypes. The
finding of upregulated Fah protein levels in CSIS-resilient vs. control rats, but downreg-
ulated Fah levels in CSIS-resilient vs. CSIS-susceptible rats is likely due to physiological
conditions related to CSIS rats. Predictive proteins make CSIS-resilient vs. CSIS-susceptible
groups linearly separable, whereby a 100% validation accuracy was achieved by the ML
models. Overall, proteomic data-driven class separation and ML algorithms can provide
a platform for delineating predictive proteins and providing insights into the molecular
mechanisms underlying resilience vs. susceptibility to stressful events.
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