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Chapter

Mass Spectrometry in Clinical 
Laboratories
Jadranka Miletić Vukajlović and Tanja Panić-Janković

Abstract

The analyses performed in clinical laboratories require a high level of precision, 
selectivity, and sensitivity. The rising number of therapeutic agents from both 
the field of small and large molecules and the increasing use of modern screening 
approaches have brought mass spectrometry into almost every clinical laboratory. 
The need to screen the patients and to follow the therapy’s success can often be ful-
filled only by the highly selective and sensitive targeted approach with mass spec-
trometry. With improving instrument design and miniaturization of the separation 
technologies, mass spectrometry is no longer an exotic analytical approach. The use 
of mass spectrometry is now not restricted to the use in a clinical laboratory, but it 
is used in operating rooms for instant and on-site helping the surgeons with defin-
ing the margin of the tissue to be extracted. In this manuscript, we describe the use 
of mass spectrometry for selected clinical applications and show the possible way of 
future applications.

Keywords: Clinical laboratory, antibiotics, newborn screening, mass spectrometry

1. Introduction

The use of mass spectrometry in the clinical laboratory has become a standard 
for analysis of different substances such as antibiotics, for newborn screening, 
detection of immune-suppressive drugs, or the analysis of therapeutic antibodies 
used for the treatment of different diseases.

The focus of the use of mass spectrometry in clinical settings is the analysis of 
clinical samples and monitoring levels of active compounds and their metabolites 
in patients’ blood and urine samples. The high sensitivity and specificity of the 
mass spectrometer and the possibility to perform specific detection of target 
analytes by applying MRM/SRM (multiple reaction monitoring/selected reaction 
monitoring) enable a targeted and highly specific analytical approach. The methods 
developed need a separation method in front of the MS and several companies such 
as Chromsystems (https://www.chromsystems.com/), ThermoFisher Scientific 
(https://www.thermofisher.com/at/en/home/clinical/diagnostic-testing/clinical-
chemistry-drug-toxicology-testing/therapeutic-drug-monitoring.html) or BioRad 
(www.bio-rad.com), to name just a few, have developed fully verified and certified 
analytical systems. The interested reader is encouraged to search the internet for 
additional providers and systems.

Applying chromatography and mass spectrometry has its primary values in rela-
tively fast detection and measuring of multiple analytes in a single sample with high 
sensitivity and high selectivity. In clinical routine, the key challenge for identifying 
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and analyzing active compounds is having the sensitivity of the analytical system 
needed and required to detect and quantify low-concentration analytes.

One of the challenges for using the MS in a clinical laboratory was the low ion 
yield, which significantly hampered the development of clinical applications. 
However, the development of new analytical systems, especially of new ion inlets 
and ion funnel designs with the most widely used electrospray ionization (ESI) 
sources has significantly improved ion focusing and ion transfer, which, finally, 
resulted in the overall increased sensitivity.

The quality of electrospray is highly dependable on separation conditions, i.e. 
mobile phase, presence or absence of salts, flow speed, column’s inner diameter, 
etc. In proteomics, the use of columns with 50 μm or 75 μm ID is state-of-the-art. 
However, the columns operated at a low flow rate of several hundreds of nanoliters/
minute are still rare in clinical analysis although they can provide a significant 
increase in analysis‘s sensitivity.

However, currently, the use of nanoflow separation still cannot cope with the 
demand for high sample throughput in clinical applications. Currently, the closest 
compromise between sensitivity and throughput is the use of the microbore and 
capillary columns of 300 μm – 500 μm and 1 mm – 2 mm inner diameter.

A new and exciting application of mass spectrometry in the clinical environ-
ment is the use of “live-MS” during surgical operations. Further development of 
this approach will revolutionize the diagnostics and help surgeons in extracting e.g. 
tumors with higher accuracy and higher yield.

2. Clinical applications

2.1 Analysis of antibiotics

Antibiotics, either cytotoxic or cytostatic to the microorganisms, have been 
widely used to treat and prevent infectious diseases and allow the body’s natural 
defenses to eliminate them. They usually have a role to inhibit the synthesis of 
proteins, deoxyribonucleic acid (DNA), ribonucleic acid (RNA), or other specific 
actions [1]. Using the energy-dependent transport mechanisms in ribosomal sites, 
antibiotics target bacterial cell wall by attaching to them, which consequently 
results in inhibition of protein synthesis and subsequent cell death [2].

With the discovery of penicillin by Sir Alexander Fleming, a new, modern, 
chapter of innovation and antibiotics development began [3]. Today, there are dif-
ferent classes of antibiotics (Table 1) and they are widely used not only in human 
medicine but also in veterinary medicine and aquaculture [35]. However, antibiot-
ics inadvertently released into the environment can cause a massive threat to the 
ecosystems and subsequently to human health. Consequently, they may accumulate 
in food and, which is much more worrying, antibiotic resistance of human patho-
gens might develop through the transfer of environmental bacteria genes (ARGs) 
[36–40]. Furthermore, sensitive individuals might experience allergic reactions 
triggered by antibiotic residues in food. Furthermore, the ingestion of sub-
therapeutic doses of antibiotics and uncontrolled use of antibiotics may initiate the 
development of drug-resistant strains of bacteria that initially appeared in hospitals 
only, where most antibiotics were being used [41].

In recent years, more and more scientific data and news reporting the misuse and 
the overuse of antibiotics [42, 43], the environment exposure pathways [44, 45], and 
the presence of antibiotic-resistant strains [46, 47] became available.

Over the years, numerous analytical methods have been developed and 
described to determine antibiotic residues in the environment and food. 
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Chromatographic separation and detection of antibiotics and their metabolites 
using various detectors is the most widely used analytical approach for monitoring 
and determination.

The electrospray ionization technique has become the technique of choice in 
many areas of analyzing biologically relevant macromolecules [48]. The soft ioniza-
tion MS techniques - matrix-assisted laser desorption/ionization (MALDI) and ESI 
[49, 50] proved to be the best approach for analysis due to the efficient ionization of 
polar antibiotics. Depending on the ionization mode applied, it has been shown that 
most antibiotics yield a better signal when positive ionization is used, with the most 
commonly formed protonated molecular ion [M + H]+. Determination of analytes 
trace levels in complex biological matrices using the molecular ion generally is 
not enough selective due to the limited resolution of unit-mass MS instruments. 
Therefore, these obstacles are overcome by using modern equipment consisting of 
liquid chromatography (LC) MS instrumentation with tandem MS (MS/MS), which 
became the technique of choice in quantitative bioanalysis. Tandem MS capaci-
ties enhance selectivity and signal-to-noise ratio and provide essential structural 
information based on which it is possible to identify the structural conformation of 
analyzed samples. For these reasons, many laboratories use triple quadrupole (Q ) 
MS/MS over ion trap (IT) MS instruments in routine practice for detection and 
analysis of antibiotics and other drug residues [51–55]. This advantage is reflected in 
its quantitative features regarding IT MS with its MSn capabilities, which are highly 
beneficial for analysis of analyte’s molecular structure and identification.

With technological advancement, instruments providing accurate-mass, high-
resolution (HR) time-of-flight (TOF) MS, single TOF-MS, or hybrid instruments 
combined with a quadrupole (Q-TOF-MS) and the collision cell for MS/MS analysis 
became available. HR-MS has entered every day’s practice of clinical laboratories as 
a viable alternative to traditional triple quadrupole mass spectrometer. The versatil-
ity of HR-MS (especially hybrid HR-MS) is reflected in increased selectivity by 
eliminating potential interferences originating from the matrix with remarkably 
similar mass-to-charge ratio (m/z) as of the measured analytes, but with a different 
structure.

Different classes of antibiotics References

β-lactam [4–6]

Sulfonamides [7–9]

Aminoglycosides [10–12]

Tetracyclines [13, 14]

Chloramphenicol [15, 16]

Macrolides [17–19]

Glycopeptides [20–22]

Oxazolidinones [23, 24]

Ansamycins [25, 26]

Quinolones [27, 28]

Streptogramins [29, 30]

Lipopeptides [31, 32]

Antibiotic Resistance [33, 34]

Table 1. 
Overview of different classes of antibiotics and some related references describing their mass spectrometry 
analysis.
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Unlike IT and Q MS, TOF-MS is a pulsed, and a non-scanning MS. TOF-MS can 
acquire full spectral data, thus separates and detects ions of various m/z by mea-
suring the time taken for the ions to travel through a field-free region. Therefore, 
these instruments are mostly combined with a fast LC separation if used for rapid 
non-targeted screening [56].

Based on all the above-mentioned, LC–MS is an essential factor in the phar-
maceutical industry and clinical laboratory due to the possibility of identifying 
impurities in synthetic products, characterize metabolites, and perform quantita-
tive bioanalysis.

The following section of this chapter provides an overview of examples of mass 
spectrometry usage in clinical laboratories for detection and characterization of 
antibiotics in a different sample including pharmaceutical, blood (plasma, serum), 
environmental water samples (waste, surface, and drinking water) [57–62], animal 
and plants and products of animal and plant origin, etc. [63–65].

Depending on sample matrices such as muscle, liver, kidney, egg, milk, or honey, 
multiclass methods based on LC–MS or LC–MS/MS are used for the analysis of 
antibiotics residues [66–69]. The complexity of the methods depends also on the 
complexity of the sample preparation. Therefore, screening methods try to avoid 
complicated sample preparation such as solid-phase extraction (SPE) and the 
evaporation of the purified extract before the chromatographic separation whereas 
quantitative methods do not bypass this step [70]. Chico et al. [71] analyzed 39 ana-
lytes residues that belong to 5 families of antibiotics with different physicochemical 
properties which include sulfonamides (SAs), quinolones (Qs), tetracyclines (TCs), 
macrolides (MCs), and penicillins (PCs). To shorten the analysis time, their method 
set-up was based on ultra-high-pressure liquid chromatography (UHPLC), like 
in Yamaguchi et al. [72] and Tian et al. [73], combined with tandem mass spec-
trometry–MS/MS with ESI. Mass spectrometry parameters were determined and 
optimized by an infusion of standard solutions to accomplish the highest sensitivity. 
The singly protonated molecular ion was selected and used as the precursor ion for 
all compounds [M + H]+, and the cone voltage was adjusted to its maximum signal 
at the first quadrupole of the mass spectrometer. The success of this method proved 
to be exceptional and, for that reason, was introduced as a method at the laboratory 
of Agència de la Salut Pública de Barcelona.

Several analytical methods are currently available to separately detect the 
fluoroquinolone and sulfonamide classes of antibiotics in manure, surface water, 
wastewater, and groundwater [74–76]. Haller et al. [77] focused on liquid–liquid 
extraction followed by LC–MS analysis of veterinary antibiotics (sulfonamides 
and trimethoprim), which are most commonly being leaked into the aquatic 
environment. Based on published LC–MS methods for sulfonamides separation on 
a reversed-phase chromatographic column, ammonium acetate buffered water and 
acetonitrile were used as mobile phases. The most successful baseline separation 
was achieved using the buffered mobile phases at pH 4.6, which enables more stable 
retention times and better peak shapes for almost all analyzed analytes due to their 
pKa. Analytes appear to be more hydrophobic and retain better on an RP HPLC 
column. Haller et al. [77] acquired SIM mass spectra of all samples (antibiotics and 
of the internal standard) in the full scan mode, using positive and negative electro-
spray ionization. Single-protonated [M + H]+ or the [M–H]–, and several (two to 
three) additional fragments that were generated through the in-source fragmenta-
tion, which is typical for single quadrupole mass spectrometer and that yielded the 
best signal-to-noise (S/N) ratios were selected for confirmation. The advantage of 
this method is multiple: a very simple extraction process was applied, thus sample 
preparation is faster, the method does not require tandem mass spectrometry, the 
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method is capable of detecting the investigated pharmaceuticals, to determine 
the half-lives of antibiotics in manure slurry, and to establish mass balances from 
antibiotic contents in medicinal feed to quantities.

Renew et al. [74] analyzed groups of antibiotics (fluoroquinolones, sulfon-
amides, and trimethoprim) simultaneously at sub micrograms per liter con-
centrations in wastewater effluents using readily available LC–MS techniques. 
Quantification and identification were performed by applying fluorescence detec-
tion and additionally confirmed by tandem LC–MS.

Following Chico et al. SPE followed by LC–MS analysis is utilized by this 
method. Hirsch et al. [78] and Hartig et al. [79] developed LC–MS techniques 
for sulfonamides detection. The application of this method allowed preliminary 
determination of the occurrence of these antibiotics in municipal wastewater treat-
ment plants. Usually, normal phase chromatography (NPC), which implied that the 
use of a polar stationary phase, was used for the LC separation. However, the NP 
stationary phases usually show large heterogeneity, which was also observed in this 
experiment as a consequence of peak tailing and non-linear retention factors with 
varying analyte concentrations [80]. Different solvents were used to accomplish 
elution in NPC, from non-polar organic to some variants like the use of isohydric 
solvents [81, 82]. Some obstacles like lack of retention of highly hydrophilic com-
pounds with ionizable functional groups have been exceeded by ion-exchange chro-
matography [83] or ion pairing on reversed-phase (RP) columns [84]. However, 
for those analytes with high hydrophilicity the problem has been overcome using 
hydrophilic interaction chromatography (HILIC). In contrast to the RP LC, the 
gradient elution in HILIC starts with a low-polarity, low acquoeus organic solvent 
and elutes polar analytes by increasing the polar content. In addition, in HILIC, ion 
pair reagents are not required, and the separation system can be easily coupled to 
MS, especially in the ESI mode [85].

A large topic opens when it comes to antibiotic treatment, as well as establishing 
resistance to them. MALDI-TOF [33, 86] technique is an ionization technique that 
allows the analysis of biomolecules and is used to monitor antibiotic treatment as 
well as rapid detection of antibiotic resistance. The feasibility of MALDI-TOF MS 
identification of bacterial colonies from solid media has been evaluated on a wide 
range of clinically relevant bacterial strains as well as yeast isolates.

MALDI-TOF MS whole-cell extracts identification represents a new method 
for obtaining a characteristic bacterial fingerprint, which allows for distinction of 
microorganisms based on different genera, species, and from different strains of 
the same species. The advantages of using this method are numerous: identification 
can be achieved in a short time after culture isolation, sensitivity is high, ability to 
detect microorganisms is not limited to prespecified targets, mass spectra obtained 
for unknown microorganisms are compared with reference database to achieve the 
identification. Therefore, MALDI-TOF MS represents a reliable method for rapid 
bacteria and fungi identification in a clinical setting.

The biggest global challenge due to growth rates of multi-drug-resistant microor-
ganisms, especially in hospital settings, introduces new analytical methods not only for 
prevention and treatment but also for the detection and determination of antibiotic-
resistant species. Numerous MALDI-TOF MS-based methods have been recommended 
for the rapid detection of antibiotic-resistance in bacterial pathogens isolated from 
bloodstream infections as well as for detection of antimicrobial-resistance in patho-
genic fungi. Methods based on an assessment of β-lactamase activity, biomarkers 
detection responsible for drug-resistance, and/or non-susceptibility, and the compari-
son of bacteria proteomic profiles incubated with or without antimicrobial drugs, are 
the most widely studied [33].
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2.2 Newborn screening-amino acid analysis

The newborn screening (NBS) program was developed for early diagnosis of 
asymptomatic newborns at risk for rare diseases such as inborn errors of metabo-
lism (IEM). However, meanwhile, the screening program includes all newborn 
independently of the risk. IEM is a serious, degenerative, chronic disease with 
painful and unpredictable clinical manifestations varying from apparent clinical 
state or obfuscated with other diseases’ symptoms to differing degrees of mental 
retardation and physical disability [87]. These diseases often result in disturbed 
levels of amino acids or acylcarnitines, which are used as diagnostic markers for 
IEM. Many problems correlated to irregular amino acid metabolism generate 
abnormal ammonia concentrations, resulting in an increased turnover of amino 
acids for energy production or an indicator of alterations in urea cycle metabolism 
[88]. In the 1960s, the first NBS for the most frequent aminoacidopathia, which is 
phenylketonuria (PKU), (Guthrie & Susi, 1963), was developed using a dried blood 
spot (DBS) [89]. It was established to detect PKU and enable early treatment and 
prevent neurodevelopmental problems if untreated. From the newborn screening 
perspective, time is a vital factor in the disease etiology. Without screening, many 
disorders cannot be recognized on time and untreated patients can exhibit serious 
symptoms of the disease and end up in a coma or even face death. Children diag-
nosed on time and with adequate treatment are functional, have reducing sequelae 
or at least substantially lessening organ damages, and may live normal life [90].

Thirty years ago, the first report was published using tandem mass spectrometry 
(TMS) [91] for analyzing multiple acylcarnitines and amino acids on a single blood 
spot. The following development of TMS had been introduced as combined with 
fast atom bombardment (FAB) and electrospray ionization (ESI) [92–96] recently 
with high-resolution liquid or gas chromatography (LC, GC) respectively [97], 
and direct analysis in real-time [98] mass spectrometry for newborn screening 
purposes. According to multiple authors [99–103], blood spot extracts are analyzed 
by FIA coupled to triple quadrupole (TQ ) TMS. Although TQ instruments pos-
sess robustness and sensitivity, these instruments also experience monoisotopic 
interferences with naturally occurring 13C isotopologues, in-source fragmentation 
interferences, and low mass resolving power, which leads to difficulties separating 
isobaric compounds with identical quantifying product ions.

The possibility of multiple disorders detection in a single blood spot shortly 
after birth increased with new technologies in mass spectrometry. TMS is the most 
widely used instrument for the detection and analysis of amino acids in the DBS 
and represents one of the most important advancements in the neonatal screening 
approach [104, 105]. Figure 1 shows a general scheme of DMB sample preparation 
for MS analysis.

Analysis of specific amino acids proved to be adequate indicator for the presence 
of certain disorders in newborns. By measuring fluctuations and disturbances in 
amino acid metabolism, a diverse group of disorders can be identified and con-
firmed [107]. Disorders that affect the metabolism of amino acids include PKU, 
tyrosinemia type I (TYR I), maple syrup urine disease (MSUD), homocystinuria 
(HCY), argininosuccinic aciduria (ASA), and citrullinemia (CIT) (Table 2). These 
disorders are autosomal recessive and can be confirmed by analyzing amino acid 
concentrations in body fluids. Because of more than 500 confirmed disorders 
detected, the use of TMS for clinical screening in a newborn is the method of choice 
for a few million newborn screenings worldwide [90, 106, 112, 114–116].

When it comes to the operation mode of the instrument, TMS can be oper-
ated in different modes such as neutral loss scanning, precursor ion scanning, 
and multiple reaction monitoring. When neutral loss scanning mode is used, all 
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precursors undergoing the loss of a common, neutral, fragment such as water, 
ammonia, or a phosphate-group are being detected and can be used for further 
experiments. The neutral loss method is applied for the detection of amino acids 
due to the neutral loss of m/z 46, which is being shared by many amino acids 
during fragmentation [117].

Acylcarnitines are detected by this method, as they produce a characteristic 
fragment ion of 85 m/z. On the other hand, other amino acids, e.g. arginine, 
ornithine, and citrulline, split off other fragments during collision-induced disso-
ciation. Due to their basic functional group that fragments easily, the most common 
loss is a combination of butyl formate and ammonia [105, 116–119]. Therefore, for 
the detection of all amino acids, acylcarnitines, and other biological compounds in 
NBS, it is safer and better to use the multiple-reaction-monitoring mode for data 
acquisition (MRM).

To detect the compound of interest, this method requires individual mass transi-
tion optimization to achieve the highest selectivity and sensitivity for both amino 
acids and acylcarnitines, and only selected amino acids can be measured quan-
titatively and selectively [116]. It is crucial to emphasize the difference between 
“screening” and quantification in TMS analysis of amino acids. For the diagnosis of 
PKU, determination of phenylalanine/tyrosine (Phe/Tyr) is of higher importance 
than a precise measurement of only phenylalanine [120, 121].

Disorders Marker(s) Method References

Classic phenylketonuria (PKU) Phe, Tyr LC–MS/MS [108]

Tyrosinemia type I SA, Tyr LC–MS/MS [109]

Marple syrup urine disease (MSUD) Leu, Ile, Val LC–MS/MS [110]

Homocystinuria (HCY) Met MALDI-TOF MS [111]

Argininosuccinic aciduria (ASA) Asa, Cit HPLC–MS/MS [112]

Citrullinemia (type I and II) (CIT) Cit ESI-MS/MS [113]

Phe (phenylalanine), Tyr (tyrosine), SA (succinylacetone), Leu (leucine), Ile (isoleucine), Val (valine), Met 
(methionine), Asa (argininosuccinic acid), Cit (citrulline).

Table 2. 
Exemplary overview of the parameters used in newborn screening and the technology applied.

Figure 1. 
Example of DMB sample preparation steps for MS analysis [106].
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For transient neonatal hypertyrosinemia, an elevated level of tyrosine is usually 
detected by TMS. To differentiate, the diagnosis of TYR I can be established by 
detecting the presence of succinylacetone in serum or urine [122]. It is important 
to emphasize that the high concentration of tyrosine is not always a companion of 
TYR I [123]. Allard et al. developed a method for verifying TYR1 by using succinyl-
acetone as a determination marker (SUAC) in DBS [124]. Some data reported that 
this method is unmistakably sensitive and specific, while other reports pointed out 
that false-positive results were also obtained [125]. Many screening programs for 
homocystinuria have combined determination of methionine (Met) as a primary 
marker, methionine, and phenylalanine ratio (Met/Phe), and the total homocyste-
ine (tHcy) as a second-tier marker in DBS [126, 127].

Bartl et al. incorporated the LC–MS/MS analysis as a potential first step in 
screening clinically symptomatic high-risk populations for the two types of HCY 
and severe B-vitamin deficiencies. In several IEMs, increased reactive oxygen 
species (ROS) causes pathophysiological oxidative damage that, in the case of HCY, 
excess Hcy directly supports ROS formation in the form of O2

−, hydrogen radical, or 
H2O2 [128]. Elevated Hcy concentration is deemed a risk factor for neurodegenera-
tive diseases inducing neurological dysfunction via oxidative stress [129]. Mild to 
moderate increases in Hcy levels have been associated with both vascular dementia 
and Alzheimer’s disease (AD) [130, 131] and with a possible increased risk of 
developing Parkinson’s disease at a later age [132–134].

Many cases on the diagnosis of PKU [135], MSUD [136], and HCY [126] in 
newborn blood spots using amino acid analysis by FAB TMS were also reported.

Screening of a large number of disorders was established when Rashed et al. [137] 
used ESI for analyzing butyl esters of amino acids and acylcarnitines. Consequently, 
clinical laboratories around the world use this automated sample insertion and data 
analysis method for a newborn screening procedure to detect and analyze selected 
amino acids and acylcarnitines [138]. Chace et al. [139] first described the use of 
TMS for MSUD NBS and recommended the determination of total leucine (Xle) in 
combination with a total leucine and phenylalanine ratio (Xle/Phe, respectively) for 
improved detection. In the following studies, recommendations for MSUD detection 
was based on an elevated Xle or leucine (Leu) [112, 140–147]. Some studies reported 
that Val is also required for referral [148–150] while others did report Val, but 
without the cut-off value [139, 143, 151]. Other studies also included the Xle/alanine 
(Ala) ratio [151]. In a long 11-years-long study in the Netherlands, MSUD NBS was 
measured in almost two million newborns using TMS, and MSUD was confirmed 
for 4 patients and 118 false-positive referrals. The authors recommended Xle/Phe 
ratio as a promising additional marker ratio to their MSUD NBS strategy and advised 
consideration of method implementation in the Dutch NBS program [138].

Although sensitive, the newborn screening does have some limitations, and 
therefore, particular caution is required to the common symptoms that may indicate 
a metabolic disorder. Its goal is to prevent morbidity and mortality through the 
early detection of metabolic disorders. A significant number of these disorders may 
present in the neonatal period; therefore, the need for a newborn screening tech-
nique is rising. Tandem mass spectrometry has emerged rapidly in previous years as 
a crucial multiplex testing technique for biochemical genetics analysis and newborn 
screening and the number of possible disorders that may be included for NBS has 
exponentially increased.

2.3 On-site mass spectrometry in OP-room

The continuous increase in the prevalence of cancer requires continuous innova-
tion of both diagnostics and treatment. One of the crucial steps in cancer therapy 
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is as complete as possible surgical removal of the tumor from the surrounding 
healthy tissue. This so-called negative margin assessment is of critical importance 
for complete tumor removal and for achieving tumor remission and improve the 
overall survival rate of patients.

Surgical on-site decision-making could be enhanced with devices and differ-
ent methods that give an instant and adequate biochemical information about the 
multiple biopsies or continuous sampling during surgery. Different MS platforms 
have shown to be able to provide and substantial impact in surgical decision-making 
process in different points during clinical workflow. To achieve this goal, surgeons 
would greatly benefit from using mass spectroscopy during the actual operation 
is going and having immediate information about the resected tumor. This would 
significantly increase the rate of successfully and almost completely removed 
tumors and reduce the risk of tumor recurrence. One of the main requirements, or 
a minimum requirement, for surgery, is that the selected technique delivers fast and 
accurate information on unprocessed samples and that the ionization is performed 
as ambient ionization thus eliminating the need for suction and minimizing the 
use of other solvents than sterile water. DESI (desorption electrospray ionization) 
was the first technology to be used for the offline analysis of resected tissue. For 
DESI, a spray of charged solvents is directed onto the tissue’s surface and secondary 
droplets containing the analytes are desorbed and sampled by the MS. Based on this 
approach, Eberlin et al. [152, 153] developed the MasSpec Pen for intraoperative MS 
analyses and rapid diagnostics of cancer.

One example is the use of the MasSpec Pen (MS Pen) for diagnostics of ovarian 
cancer [154] published by Sans et al. Ovarian cancer is a highly lethal disease that 
is very often diagnosed very late and it is the fifth leading cause of deaths among 
women [155, 156]. Furthermore, as with other cancers, accurate diagnosis is of 
extreme importance for the selection of the treatment and development of preci-
sion medicine approach and personalized medicine and therapy. For ovarian cancer, 
two therapy scenarios are possible: a) cytoreductive surgery before chemotherapy 
and b) surgery upon chemotherapy for tumors that cannot be fully resected. The 
timing for the cytoreductive surgery is of great importance and in both cases, it is 
very important to differentiate the tumor from the healthy tissue with high preci-
sion. Identification of a tumor can also be very difficult in cases where scarring 
or some other fibrous tissue is present and, sometimes, healthy tissue is removed, 
which should be avoided. Unlike iKnife, the MS Pen uses a water droplet to extract 
molecules from the tissue [157] and transfer it to the ion source. The full process is 
very fast, it needs no derivatization or other kinds of sample preparation and the 
acting surgeon gets an instant result based on a database search, which can help to 
properly identify the resected tissue and enable better determination of the resec-
tion margin. Sans et al. [154] have described the use of MassSpecPen for rapid diag-
nosis of ovarian cancer. The authors analyzed tissue samples from the tissue bank 
or from prospectively collected samples from endometriosis surgeries to establish 
the database needed. The authors analyzed the presence of small metabolites such 
as glycerophosphoinositol, glycerophosphoserine, glutathione, and glycerophos-
pholipid. It was found that normal ovarian tissue was characterized by presence 
of ascorbate and some other small metabolites with a relatively high abundance in 
comparison to cancer samples.

The iKnife was developed with the same purpose as the MassSpec Pen but it 
relies on ionizing analytes in the smoke plum that is generated during electro cau-
terization of the tissue during the surgery [158]. Unlike the MassSpec Pen, iKnife is 
preferably used to identify lipids in the smoke plum. By comparing the mass spectra 
of the sample generated during the surgery and the database that was established 
earlier, the surgeon sees the result instantly on the screen and can make decisions 
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about further procedure. St. John et al. described the use of iKnife for the identifica-
tion of breast pathology for breast cancer surgery [159]. The aerosol produced by 
the monopolar hand piece used in surgery was aspirated and analytes therein were 
ionized in the mass spectrometer’s ion source. Generated data were used to identify 
the tissue by applying multivariate analysis. The method proved to be able to iden-
tify the substances within a very short time range of 1.8 seconds. Here, the spectral 
differences that arise between the two operational modes of the electrosurgical 
knife – the “cut” and the “clog” – were combined to create a multivariate statistical 
model and to allow for using both modes during the surgery.

A further application where the iKnife was applied is ex-vivo use for diagnosis 
of cervical disease. The specimen obtained by cervical punch biopsy can either bee 
snap frozen and used for confirmation of the conventional histology analysis or it 
can be analyzed immediately upon sampling. Tzafetas et al. [158] was showed that 
the application of this technology enabled identification of lipids that characterize 
cancer, the normal tissue, and samples affected by HPV.

MALDI mass spectrometry has already proved efficient for analyzing micro-
organism and for the offline imaging (MSI) tissue analyses. It is the MSI that 
represent an encouraging tool to support histopathology analyses and the decision-
making processes. MALDI MSI captures the entire spectrum of biomolecules, 
including specific biomarkers, providing enhanced discriminating power over the 
visual inspection of tissue and placing it as a proper assisting method in diagnosis 
procedure.

With the progress of ambient mass spectrometry techniques, such DESI, MS 
became a powerful methodology for characterizing lipids within tumor specimens. 
The DESI MS analysis can be performed with minimal sample preparation and 
it provides molecular information from tissue samples rapidly. This qualifies the 
DESI and MALDI methods as a diagnostic method in the OP room. In addition to 
tumor classification, defining tumor subtypes, and identifying tumor grade, this 
method also provides necrotic tumor tissue identification, an indicator of high-
grade malignancy, and can help distinguish necrotic tumor tissue from viable tumor 
regions [159–162].

3. Conclusion

The use of MS in clinical laboratories worldwide increasing, and, as a result, 
substantial improvements in assay performance are occurring rapidly in many 
areas such as toxicology, endocrinology, and biochemical genetics. Numerous types 
of mass spectrometers are being used for the characterization of small molecules 
such as drugs of abuse, steroids, amines, amino and organic acids, as well as larger 
compounds such as proteins and ribosomal RNA.

The development of MS technologies has pushed clinical MS toward the analysis 
of peptides and proteins for diagnostic examination. However, the quantitative 
analysis of proteins by MS is still a challenging area of laboratory medicine, which 
faces many challenges before being fit for a routine application. Also, MS contrib-
utes to the quality of the many test results (standardization of assays for steroids, 
lipids, hemoglobin A1c, etc.), and is used as a standard method in all US states for 
newborn screening. Furthermore, it is important to address that nearly every insti-
tution sends tests to the reference laboratories which frequently perform these tests 
using MS. With the improved functionality that benefits novel front-end modifica-
tions and computational abilities, MS can now be used for nontraditional clinical 
analyses, including clinical microbiology applications for bacteria differentiation 
and in surgical operating rooms.
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