Laser Ablated Citrate-Stabilized Silver Nanoparticles Display Size and Concentration Dependant Biological Effects

Jelena Filipović Tričković, Miloš Momčilović, Gordana Joksić, Sanja Živković, Bojana Ilić, Miloš Ognjanović, Mirjana Novaković, and Ana Valenta Šobot

VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia

Correspondence should be addressed to Ana Valenta Šobot; ana_v.s@vin.bg.ac.rs

Received 14 September 2022; Accepted 4 March 2023; Published 8 August 2023

1. Introduction

Silver nanoparticles (AgNPs) have been extensively studied over the past decades as a promising agent in various fields, from the food and paint industry to the wide spectrum of medical applications such as wound healing, material coating, dentistry, or even as potential anticancer agents [1–5]. Most of these applications rely on their well-known antibacterial [6] and biofilm inhibitory activities, antifungal, anti-viral, anti-inflammatory, antiangiogenic, and anticancer agents [7], as well as antiparasitic, antioxidant, and anticoagulant activities [8]. On the other hand, the apparent adverse effects of AgNPs have also been reported, varying from cytotoxicity, genotoxicity, neurotoxicity, cardiotoxicity, and nanoparticle-induced oxidative stress [9]. Several mechanisms have been described to contribute to AgNPs-induced toxicity. The induction of oxidative stress is one of the major mechanisms responsible for the antibacterial effects of AgNPs and also its geno- and cytotoxicity [10–13]. It has been reported that AgNPs increase the oxidative stress by ROS generation and antioxidant enzymes inhibition, which leads to lipid, DNA, and protein oxidative damage.
2. Materials and Methods

2.1. AgNPs Synthesis. AgNPs were produced by the laser ablation method. A high purity (>99.99% metal basis, 1.0 mm thick, Alfa Aesar, USA) silver foil was placed in a glass and covered with 6 mL of deionized water and 200 μL of a 0.6 mg/L water solution of citric acid (citric acid monohydrate p.a., Alkaloid Skopje). Before ablation, the silver plate was cleaned by using an ultrasonic bath for 30 minutes to remove contamination. The laser applied was the picosecond Nd:YAG system (Nd:YAG EKSPLA SL 212/ SH/FH, LT), operating at the fundamental wavelength of 1064 nm with a 150-ps pulse length, pulse energies were 6 mJ (further referred to as AgNPs1) and 12 mJ (further referred to as AgNPs2), giving fluencies of 0.12 and 0.24 J/cm², respectively. During the irradiation, the laser was focused on the Ag target using a 16 cm lens. Each sample was irradiated for 20 minutes at room temperature, leading to the formation of a pale-yellow colloidal suspension.

2.2. AgNPs Characterization. To determine the nanoparticles’ concentration, size, shape, composition and structure, several measurements were performed. First of all, the total concentration of silver in these colloidal solutions was determined using the ICP-OES method (ICP-OES, iCap7400 DUO, Thermo Fisher, USA). The ultraviolet-visible spectrum of AgNPs colloidal solutions was recorded in the wavelength range from 190 to 1100 nm using a UV-Vis spectrophotometer (LLG-UNISPEC 2, LLG Labware, USA).

The size, shape, and dispersity of Ag nanoparticles were analysed by transmission electron microscopy (TEM), using a FEI Talos F200X microscope at 200 keV with an X-FEG source and point-to-point resolution below 0.24 nm. The micrographs were captured in the conventional mode and recorded on a CCD camera with a resolution of 4096 × 4096 pixels using the User Interface software package. The samples for TEM examination were prepared by a standard procedure in which a drop of the very dilute suspension was placed on a carbon-coated copper grid, which was allowed to dry in the air.

The size distributions were determined by manually measuring 60–120 particles using the public domain software ImageJ [34]. For obtaining the mean particles’ size (dTEM) and an index of polydispersity (PdI), the collected data were finally fitted to a log-normal function as follows:

\[
y = y_0 + \frac{A}{\sqrt{2\pi}\omega x} e^{-\left[\ln(x/x_0)\right]^2/2\omega^2}.
\]

The averaged hydrodynamic diameters (dH) were estimated by dynamic light scattering (DLS), measured on a NanoZS90 apparatus (Malvern, UK) with a 4 mW He-Ne laser source (λ = 633 nm). The measurements were performed in disposable polystyrene cuvettes (DTS0012) at ambient temperature (25 ± 0.1°C).
2.3. Determination of Minimal Inhibitory Concentration (MIC). The antimicrobial activity of AgNPs in comparison to standard was investigated on bacterial strains responsible for the formation of supragingival dental biofilm such as *Streptococcus mutans* (ATCC 25175), *Aggregatibacter actinomycetemcomitans* (ATCC 29552), *Porphyromonas gingivalis* (ATCC 33277), *Fusobacterium nucleatum* (ATCC 25586), as well as on bacteria responsible for the failure of the treatment of different dental infections: *Staphylococcus aureus* (ATCC 25923), *Escherichia coli* (ATCC 25922), *Pseudomonas aeruginosa* (ATCC 27853), and *Streptococcus β haemolyticus* (ATCC 27956) using the microdilution method according to ISO20776-1. The aerobic bacterial stock was cultured on Mueller–Hinton Agar (HiMedia Laboratories, Dindori, India) at 37°C for 24 hours, while the anaerobic stocks were cultured on the Shaedler broth (Thermo Fisher Scientific, Waltham, MA, USA) supplemented with vitamin K and hemin at 37°C for 72 hours in an anaerobic chamber.

After being cultured, the bacterial strains were suspended in sterile saline to obtain the final cell concentration of 5 × 10^8 CFU/mL. The minimum inhibitory concentrations (MICs) were determined after 24 hours of incubation of two-fold serial dilutions of the investigated samples (100 μL) prepared in the liquid growth medium inoculated with bacterial strains using 96-well plates under aseptic conditions. The plates that did not contain the investigated samples were used as controls.

2.4. Cell Culture and Treatment. The human primary dermal fibroblast cell line (PCS-201-012™) was commercially available (https://www.atcc.com). The cells were grown in Dulbecco’s modified eagle’s medium (DMEM, Gibco, Thermo Fisher Scientific, USA) supplemented with 10% heat-inactivated fetal bovine serum (FBS, Capricorn Scientific, Germany) at 37°C and 5% CO₂. The aerobic bacterial stock was cultured on the Shaedler broth (Thermo Fisher Scientific, Waltham, MA, USA) with vitamin K and hemin at 37°C for 72 hours in an anaerobic chamber.

2.5. XTT Assay. The viability assay (XTT) was performed according to the standard procedure [35]. Shortly, after treatment and medium discharge, the cultured cells were supplemented with XTT reagent activated with phenazine methosulfate (PMS) and placed at 37°C until the colour developed. Absorbance was measured at 470 nm on a microplate reader (Sunrise, Tecan Group Ltd., Switzerland).

2.6. Ki-67 Immunofluorescence. Ki-67 immunofluorescent staining was performed to elucidate the effects of AgNPs not only on cellular survival but also on the proliferation rate. To perform immunofluorescent staining, the cells were grown on polylysine-coated slides (Merk, Germany) and after adhering to the polylysine surface, treated with AgNPs for 24 hours. After the treatment, the cells were fixed with 4% formaldehyde solution in 1 x PBS, permeabilized with 0.25% Triton-X (Merk, Germany), and blocked with 1% BSA solution. Directly labelled Ki-67 (SolA15, FITC, eBioscience™, Thermo Fisher Scientific, USA) antibody was hybridized overnight at 4°C. The slides were washed in 1 x PBS solution, dehydrated in series of ethanol, and stained using DAPI-Vectorshield solution (Vector laboratories, United Kingdom). The results are presented as the proliferative index (PI), the ratio between immunoreactive (Ki-67+) cells, and the total number of cells. At least 500 cells per treatment were analysed using a Zeiss-Axioimager A1 microscope and the ISIS imaging software package (MetaSystems, Altlusheim, Germany).

2.7. Pro-Oxidant/Antioxidant Balance (PAB) Assay. Following 24 hours of treatment, the medium was discarded, and cells were detached from the flasks using the trypsin solution (0.5% Trypsin-EDTA, Capricorn Scientific, Germany). After washing with PBS, the cells were lysed by repeated freezing and thawing. Results for both the PAB assay and lipid peroxidation products were presented per mg of proteins in the samples, according to Lowry [36].

PAB assay was performed as previously described in [37]. Two oxidation-reduction processes in the same sample are in the basis of the following assay: oxidation of chromogen 3,3′,5,5′-tetramethylethylene diamine (TMB) to a coloured cation by peroxides, catalysed by the horseradish peroxidase (HRP), and a reduction of coloured cation by antioxidants to a colourless compound. The optical density (OD) of the coloured product was measured at 450 nm, with a reference wavelength of 570 nm. The values are presented as arbitrary Hamidi–Koliakos (HK) units and calculated from the standard curve of H₂O₂ in the standard solution.

2.8. Lipid Peroxidation Products (LPP). The LPP assay relies on the reaction of N-methyl-2-phenyldimide with lipid peroxidation products, malondialdehyde (MDA), and 4-hydroxyalkenals (HNE) [38]. This reaction produces a stable chromophore with an OD value of 586 nm. LPP values were calculated as equivalents of the 1,1,3,3-tetramethoxypropane standard curve.

2.9. Statistical Analysis. Experiments were set up in triplicate and repeated twice. The results were presented as mean ± standard error of the mean (SEM). The one-way ANOVA statistical test was used for statistical analysis using SPSS 10 for Windows (IBM, Armonk, NY, USA). The level of significance was set to < 0.05.

3. Results and Discussion

3.1. AgNPs Synthesis and Characterization. Two different laser energies applied during the laser ablation of silver foil led to two types of nanoparticles, whose size and concentration were different: AgNPs1 (laser energy: 6 mJ) and AgNPs2 (laser energy: 12 mJ). The concentrations of AgNPs were 17.4 ± 0.1 and 28.7 ± 0.2 μg/mL for AgNPs1 and
AgNPs2, respectively. UV-Vis spectroscopy is the simplest way to confirm the formation of nanoparticles. The appearance of a peak near 430 nm (Figure 1) demonstrates the surface plasmon resonance properties of AgNPs [39]. Also, there is a clear enhancement in the intensity of the surface plasmon resonance (SPR) band with the increasing nanoparticle concentration.

The morphology and particle size were obtained by statistical analysis of prepared nanoparticles. Typical TEM micrographs of AgNPs1 and AgNPs2 are shown in Figures 2(a) and 2(b). The nanoparticles are mainly spherical and pseudospherical, with larger particles tending to form hexagonal shapes. The particles are partially agglomerated on each other, and their sizes are subjected to the log-normal size distribution (Figures 2(c) and 2(d)). After the statistical analysis, the mean particle size of AgNPs1 was $d_{\text{TEM}} = 21.2 \pm 6.8$ nm (the polydispersity index was 32.1%), while the size of AgNPs2 was $d_{\text{TEM}} = 15.3 \pm 4.6$ nm ($PdI=30\%$).

As is generally accepted, the very negative zeta potential of nanoparticles indicates their good colloidal stability [16]. Furthermore, zeta potential values for colloidal suspensions stabilized by electrostatic repulsion must be at least ± 30 mV [40]. The zeta potentials of the produced silver colloidal solutions were -32.1 ± 5.22 mV and -33.2 ± 5.61 mV for AgNPs1 and AgNPs2, respectively.

The hydrodynamic diameters of nanoparticles’ aqueous suspension at pH 7 were determined by the DLS method (Figure 2). The obtained d_H values for AgNPs1 and AgNPs2 were 81 ± 19 nm and 78 ± 18 nm, respectively. The difference between the measured d_{TEM} and d_H is because the d_H value presents the size of the nanoparticles in their hydrated state, together with the surrounding layers of water molecules that extend the hydrodynamic diameter and make the hydrated shell around the particle significantly larger than the particles themselves. Unlike DLS, this cannot be observed by microscopic techniques because of the low background originating from low electron density. The measured d_H values of synthesized nanoparticles were notably higher than the d_{TEM}, which may be a hint of a certain degree of particles’ agglomeration in suspension. That can lead to an unwanted destabilization of the colloid. Nevertheless, the obtained d_H values were still inside the acceptable biomedical application range (less than 100 nm).

3.2. Determination of Minimal Inhibitory Concentration (MIC)

MICs represent the lowest concentration of samples that completely inhibit visible bacterial growth. AgNPs2 with a higher concentration and smaller particle size (15.3 ± 4.6 nm) showed antibacterial potential at 14.35 µg/mL against all tested oral pathogens, as well as *Pseudomonas aeruginosa* and *Staphylococcus aureus* have previously been reported in the literature, whereas reported minimal inhibitory concentrations varied to a great extent from approximately 5 to 50 µg/mL, depending on the tested strain, clinical or commercial, as well as the nanoparticle size [41]. Also, all of these nanoparticles were chemically synthetized, where toxic waste is produced during the synthesis process and could have a synergistic effect with the silver. Barabadi et al. (2021) compared the antibacterial effects of photosynthetized AgNPs using the *Zataria multiflora* plant extract (green synthesis) with commercially available and chemically synthetized citrate-reduced AgNPs against *Staphylococcus aureus* and *Pseudomonas aeruginosa*. They stated that green synthetized AgNPs had the most potent antibacterial effects against tested bacterial strains in planktonic, as well as in the biofilm form [42]. Hamida et al. reported similar findings when compared biogenic AgNPs and silver nitrate. They found out that the effects are a result of intracellular ROS generation leading to biomolecules oxidation [43]. Reduction in ATP levels in AgNPs-treated bacteria support these findings [44]. However, reports on the antimicrobial activity of laser synthetized AgNPs are rather limited, [24, 41, 45, 46] and to the best of our knowledge, they are not available for the oral pathogens.

Since undiluted AgNPs1 have greater concentration than MIC for AgNPs2, the probable reason for AgNPs2 efficacy is the smaller particle size. Other research groups have also reported that the antimicrobial effect of AgNPs correlates with smaller particle sizes and nanoparticle shape [41, 47, 48]. Since both synthetized nanoparticles are similar in shape (spherical and pseudospherical), the size seems to be the determining factor for the antibacterial activity in this case. Comparing AgNPs with different sizes, shapes, and
Figure 2: (a) TEM micrograph of AgNPs1 nanoparticles; the scale bar is 100 nm; (b) TEM micrograph of AgNPs2 nanoparticles; the scale bar is 50 nm; (c-d) corresponding log-normal particle size distributions. Hydrodynamic diameters of AgNPs1 (e) and AgNPs1 (f) measured by the DLS method.
surface coatings revealed that shape had a greater influence on the antibacterial activity than surface coatings [49]. Besides size, shape, and concentration, other factors could contribute to their antimicrobial effects, such as direct bacterial cell membrane damage, protein and/or enzyme inhibition and denaturation, and the generation of reactive oxygen species (ROS) with subsequent oxidation of the cellular macromolecules [6, 9, 50]. Apparently, ROS production plays a major role in the antimicrobial activity since it was demonstrated that it interacts with thioredoxin system of *Staphylococcus aureus*, one of the most important systems in the processes of oxidative stress. This interaction leads to depletion of intracellular thiol which in turn activates the oxidative stress by the disruption of the protective components [51]. The proposed antibacterial mechanisms of AgNPs are presented in Figure 3.

3.3. PAB, LPP, Cellular Survival, and Proliferation. To determine nanoparticle effects on ROS production and their effects on the redox state and macromolecules on the human fibroblast cell line, we measured prooxidant/antioxidant balance and formation of lipid peroxidation products after 24 hours treatment with MIC concentration (14.35 µg/mL) of both AgNPs1 and AgNPs2. We also used smaller concentrations of 1, 0.1, and 0.05 µg/mL to examine the effects of low concentrations and concentration dependence. The highest tested concentration of both nanoparticles induced significant elevations of PAB and LPP values ($p < 0.001$). Comparing the effects of two types of synthesized nanoparticles, the increase was significantly higher after AgNPs2 treatment for PAB values ($p < 0.001$, Figure 4).

These results are consistent with the literature data, where the antibacterial effects of AgNPs are mostly attributed to the generation of ROS [52]. The higher pro-oxidant state and increased lipid peroxidation products after AgNPs2 treatment suggest that the particle size plays a pivotal role in ROS production, which is mostly accredited to the larger surface areas that enable interaction with the cellular macromolecules [17]. Consistent with these results are the effects on cellular survival and proliferation. The same concentration of AgNPs led to a dramatic loss of viable cells compared to the control ($p < 0.001$); also, the reduction in cellular survival rate was more pronounced for AgNPs2 ($p < 0.001$). This viability reduction might be a consequence of either cell death, proliferation suppression, or their combination [16]. AgNPs inhibition of cell proliferation and migration by activation of caspase 3 and 7 was previously reported [53]. To assess whether viability reduction was a result of cell death or suppression of proliferation, we performed Ki-67 immunofluorescent staining, which showed that at these concentrations, no proliferative active cells were detected (no Ki-67+ cells), while also cells with altered morphology (small, condensed nuclei) were observed, suggesting that viability reduction was a combination of both cytotoxic effect and proliferation suppression.

The effects of low concentrations were quite opposite. Both AgNPs1 and AgNPs2 decreased PAB levels ($p < 0.001$) at concentrations of 1, 0.1, and 0.05 µg/mL. Interestingly, the same concentrations had different effect on lipid peroxidation; AgNPs1 elevated lipid peroxidation products compared to control ($p < 0.01$ for 1 and 0.1 µg/mL), while only the lowest AgNPs2 concentration of 0.05 µg/mL increased LPP ($p < 0.001$). The concentration of 0.1 µg/mL had no effect and the concentration of 1 µg/mL slightly, albeit insignificantly, reduced lipid peroxidation.

The effects on PAB levels could be explained by mild-free radicals’ production which promptly activates enzymes involved in antioxidant defence. The enzymes can lower overall pro-oxidant/antioxidant balance to a certain extent, but at high concentrations, such as our determined MIC (14.35 µg/mL), their capacity is overcoming and pro-oxidant state occurs. *In vivo* study reported by Docea et al. [54] demonstrated that the subacute administration of AgNPs also lower pro-oxidant/antioxidant balance due to the activation of nonenzymatic (reduced GSH) and enzymatic (increased catalase activity) defence systems.

On the other hand, lipid peroxidation products are the result of interactions between ROS and polyunsaturated fatty acids (PUFA) [55]. Regarding the effects of lower AgNPs concentrations on LPP levels, two types of nanoparticles showed different trends. Larger AgNPs1 nanoparticles led to a small but consistent linear increase in lipid peroxidation (Figure 4). Furthermore, only the lowest (0.05 µg/mL) concentration of AgNPs2 increased LPP levels, while with an increase in concentration up to 1 µg/mL, LPP levels decreased. This discrepancy could be explained by the nanoparticle size, i.e., a similar trend was observed in the previously mentioned *in vivo* study [54]– PVP-coated nanoparticles that were larger increased TBARS dose-dependently, while EG-coated nanoparticles (smaller in size) increased TBARS at the lowest concentration, subsequently decreasing it at all higher concentrations, similar to AgNPs2. The authors explained that this difference was due to different coating materials; however, since in our experiment, the surface-stabilizing agent was the same for both types of AgNPs, the particle size should not be neglected. Another possible explanation is the interaction between nanosilver and enzymes involved in antioxidant defence, where it was shown that AgNPs sized 20 nm interact with catalase, thus suppressing its activity and disabling
antioxidative defence to a certain extent [56]. Additionally, smaller nanoparticles could display their effects beyond the cell membrane, i.e., the cellular uptake and interplay with mitochondria could be the cause of antioxidative enzymes activation, ROS quenching, and reduction of LPP levels at the lower applied concentrations [20, 57]. Bressan et al. demonstrated that AgNPs smaller than 20 nm enter human dermal fibroblasts by endocytosis, upon which they form aggregates in the close proximity of mitochondria and impair their function without altering other subcellular compartments. If ROS overaccumulate, the mitochondrial membrane could breakdown, leading to the release of mitochondrial antioxidative enzymes into the cytoplasm and ROS quenching or activation of regulatory genes involved in cellular defence, which results in overall cellular protection [58].

Consistent with this, it was shown that LPP production, depending on its extent, could not only lead to cellular damage but also display a protective effect [55]. Our results demonstrated that all three concentrations of both nanoparticles elevated XTT levels and the proliferation index (Ki-67+) compared to the control (Figure 4(c), Figure 5).

Interestingly, for AgNPs2, this elevation was in inverse correlation with LPP, suggesting the previously mentioned activation of alternative regulatory genes with the prosurvival function. A mild increase in XTT levels was observed for AgNPs2 (statistically significant for 0.1 and 1 μg/mL, $p < 0.01$, and $p < 0.001$, respectively) and great concentration-dependent induction of cellular proliferation was observed for all three concentrations ($p < 0.001$). On the contrary, AgNPs1 led to slightly higher, albeit insignificant, increase in XTT levels compared to AgNPs2 (Figure 4(c)), and a statistically significant lower increase in the proliferation index compared to AgNPs2 ($p < 0.001$). Since XTT assay essentially represents a measure of the mitochondrial activity in living cells, i.e., not only the number of viable cells but also their metabolic activity, [59] higher proliferation rates after AgNPs2 could be a sign of activation of additional prosurvival pathways, rather than only mitochondrial that favour cellular proliferation. Our previous research also demonstrated that the proliferation ability of AgNPs is size dependent and probably mediated by ILGF-1 production in peripheral blood mononuclear cells [19]. In addition, other research studies also showed concentration- and size-dependent effects of nanoparticles on cellular defence mechanisms [56].

Figure 4: Prooxidant/antioxidant balance (PAB) (a), lipid peroxidation products (LPP) (b), cell viability (c), and the proliferation index of dermal fibroblast cells expressed as proliferation index (d) of both AgNPs1 and AgNPs2 and all treated concentrations ($n = 6$). —control v.s. AgNPs1 or AgNPs2; —AgNPs1 v.s. AgNPs2; */# — $p < 0.05$; **/## — $p < 0.01$; ***/### — $p < 0.001$.
dependant effects on the proliferation rates of human keratinocytes and dermal fibroblasts [2, 15, 60]. Similar to our results, high concentrations displayed a cytotoxic effect, while lower concentrations led to an increase in keratinocyte proliferation, without altering fibroblast proliferation rates. A positive effect on proliferation is mostly attributed to the suppression of proinflammatory pathways and the activation of anti-inflammatory pathways. Unlike these studies, we showed that lower concentrations also increase the proliferation rate of human dermal fibroblasts and that this increase is more pronounced after treatment with smaller nanoparticles (Figure 5). We suppose that this effect is related to the activation of alternative pathways, but the exact mechanism remains to be elucidated.

4. Conclusion

The biological effects of different concentrations and sizes of two types of AgNPs synthesized by picosecond laser ablation of silver foil in a water solution of citric acid were examined in this study. Nanoparticles with good colloidal stability were obtained, whereas higher laser energy (12 mJ) produced overall smaller AgNPs (15.3 ± 4.6 nm) with higher concentration (28.7 ± 0.2 μg/mL). High concentrations of these nanoparticles, AgNPs2, displayed a potent antibacterial effect against biofilm forming bacteria, as well as against Staphylococcus aureus and Pseudomonas aeruginosa. The same concentration also led to a strong pro-oxidant and cytotoxic effect with the complete inhibition of cell proliferation. However, when applied at lower doses, the antimicrobial effect was absent, but a positive effect on the cell proliferation and metabolic activity was observed, suggesting that different concentrations display a substantially opposite effect. Additionally, the low concentration showed an antioxidative effect probably due to the antioxidative enzymes activation. These findings could be of importance for the treatment of various conditions with essentially different pathophysiological mechanisms, ranging from dental biofilm inhibition and resistant dental infections, as well as proliferative conditions when applied at high concentrations, to atrophic and inflammatory conditions, when applied at low concentrations.

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Acknowledgments

The authors would like to acknowledge the following financial support for the research, authorship, and/or publication of this article. This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract number 451-03-47/2023-01/200017).

References

[31] J. Harris-Ricaldo, L. Fang, A. Herrera-Herrera et al., “Bacterial profile of the supragingival dental biofilm in children...

