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Abstract: In this paper, the possibility of determining the thermal, elastic and geometric characteristics
of a thin TiO2 film deposited on a silicon substrate, with a thickness of 30 µm, in the frequency range
of 20 to 20 kHz with neural networks were analysed. For this purpose, the geometric (thickness),
thermal (thermal diffusivity, coefficient of linear expansion) and electronic parameters of substrates
were known and constant in the two-layer model, while the following nano-layer thin-film parameters
were changed: thickness, expansion and thermal diffusivity. Predictions of these three parameters
of the thin-film were analysed separately with three neural networks. All of them together were
joined by a fourth neural network. It was shown that the neural network, which analysed all three
parameters at the same time, achieved the highest accuracy, so the use of networks that provide
predictions for only one parameter is less reliable. The obtained results showed that the application of
neural networks in determining the thermoelastic properties of a thin film on a supporting substrate
enables the estimation of its characteristics with great accuracy.

Keywords: thin-film; TiO2; photoacoustic; artificial neural networks; thermal diffusion; thermal
expansion; inverse problem

1. Introduction

The photoacoustic effect is the effect of the appearance of sound in the gaseous
environment of a sample that is illuminated. This effect was discovered by A. G. Bell
in 1880 [1], and explained by A. Rosencwaig almost 100 years later, in 1975 [2–4]. If
the sample is exposed to the effect of electromagnetic radiation, part of the excitation
energy is absorbed and part of the absorbed energy is transformed into heat through a
non-radiative de-excitation relaxation process. This process is also called the photothermal
effect. The heated sample generates a disturbance of the thermodynamic equilibrium with
the environment and, as a result, there is a fluctuation of pressure, density and temperature
in both the sample itself and in its gaseous surrounding. These fluctuations affect the
appearance of several phenomena that can be detected in different ways [4]. Numerous
non-destructive methods, known as photothermal methods, based on the recording of these
phenomena, have been developed in the last half-century and are increasingly used for
the characterization of various materials, electronic devices, sensors, biological tissues, etc.
Pressure fluctuations are, in fact, a sound signal, the so-called photoacoustic effect, which
can be detected using piezoelectric or ultrasonic sensors as well as a microphone [5–11].
The gas microphone photoacoustic was the first developed and today is one of the most
widespread experimental techniques. The implementation of this measuring technique
with a cell of minimal volume, proposed in the early 1980s, ensures that acoustic losses are
attenuated as much as possible in detection.
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In the last decade, TiO2 has had a wide range of applications in coatings, medicines,
plastics, food, inks, cosmetics, and textiles. In the form of thin-film, TiO2 has been used for
a great variety of applications, including photocatalytic degradation of organic pollutants
in water as well as in air, dye-sensitized solar cells, anti-fogging, super hydrophilic, micro-
and nano-mechanical sensors, etc. [12–15]. To be able to measure the physical properties of
such thin films, it is usually necessary to deposit such a film on a thicker wafer.

The analysis of thin-films on substrates has always been a challenge for photoacoustic
because film thicknesses ranges from a few tens to several hundred nanometres. Depending
on the thickness of the substrate (usually more than tens of microns), such film thicknesses
are usually at the limit of experimental detection [16–19]. This means, for example, that the
differences in the amplitude of the photoacoustic signals (PAS), generated by a two-layer sample
(substrate + thin-film) in the case where only the thickness of the film is changed, are extremely
small [20–28]. The analysis of such two-layer samples is also theoretically demanding.

For photoacoustic measurements to be used in the characterization of materials, it
is necessary to develop a theoretical model that well describes all the processes involved
in the formation of the measured signal: the process of absorption and its conversion
into heat, which depends on the optical properties of the sample, the processes of heat
conduction and sound propagation, which depend on the thermal and elastic properties
of the sample and the thermodynamic pressure change in the gaseous environment of
the sample, that is, the sound signal formed by the heated sample and recorded by a
microphone. The inverse solution of the photoacoustic problem is essentially a multi-
parameter fitting of the sample properties based on the developed model, which should
lead to the best matching of the theoretical model with the experimentally measured signal.
Since it is a multi-parameter problem, which is also a non-linear and ill-posed problem of
mathematical physics due to the limited measurement range, the inverse photoacoustic
problem is still the subject of intensive research, especially in the case of multi-layered
structures or semiconductors where an increased number of parameters influence the
recorded increase in signals (in semiconductors, photogenerated carriers affect the recorded
signal. In multi-layered structures, the same processes occur in all layers, but they are
controlled by properties of each layer). This makes solving the inverse photoacoustic
problem extremely difficult.

Recently, machine learning has been introduced to solve the inverse photoacoustic
problem. The achieved results are encouraging because they show that the application of
neural networks allows a very high accuracy of the multi-parameter fitting.

The earlier developed procedure based on neural networks [10,11,29–31] for pro-
cessing of experimentally recorded photoacoustic signals of silicon samples by the open
photoacoustic cell [32–35] shows effective recognition and removal of instrumental influ-
ence [33–40], and, consequently, provides a detailed and precise characterization of the
sample [41–46]. On the other hand, a very thin TiO2 layer (nano-layer) is easily deposited
in a silicon substrate. Therefore, we selected a well-photoacoustically characterized silicon
sample as the substrate, open photoacoustic cell photoacoustic set-up for measurement,
and neural networks for solving the inverse PA photoacoustic problem and determining
the thin-film’s properties.

In order to avoid additional normalizations and the calculation of effective values, we
resorted to the use of the two-layer model for determining thin-film parameters where the
properties of the silicon substrate are known [21,47–62]. Neural networks were formed for the
analysis of photoacoustic signals generated from the Si substrate and the TiO2 thin-film system.

Based on previous experiences in PAS processing, we expected that they would recog-
nize differences in signals caused by only changing film parameters (thickness, thermal
diffusivity, coefficient of thermal expansion). We also expected that neural networks can
determine the specified parameters of TiO2 thin-film with satisfactory accuracy and reliabil-
ity. To do this, we created a relatively small database of photoacoustic signals for training
and four types of networks; three of them serve as the individual predictions of only one
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parameter of the film, and the fourth, which serves as the prediction of all three parameters
simultaneously.

In Section 2, a brief description of the theoretical model for the PAS measured on a
two-layer structure is given. In Section 3, the network architecture used in the work is
explained. Section 4 explains in detail how the base upon which the networks were trained
and tested was formed. In Section 5, the results are given and discussed. In the end, the
most important conclusions were drawn. The obtained results show that the application of
neural networks in determining the thermoelastic properties of a thin-film on a supporting
substrate enables the estimation of thin-film characteristics with great accuracy.

2. Experimental Procedure

The open-cell experimental photoacoustic set-up in a transmission configuration is
illustrated in Figure 1. Excitation is performed by a low-power 10 mW laser/LED (XL7090-
RED, RF Communication Electronic Technology Co., Ltd., Xiamen, China) diode regulated
by a frequency generator in the range of 20 Hz to 20 kHz and which illuminates the sample
with a red light of a wavelength of 660 nm with a distance that ensures homogeneous
(uniform) surface illumination. Illumination control is performed by a sensitive photodiode
(BPW34 Vishay Telefunken).
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Figure 2. Frequency dependence of (a) amplitude and (b) phase of experimentally measured pho-
toacoustic signal TiO2 placed on Si substrate (red asterisk) and the corresponding amplitude and 
phase of the photoacoustic signal δptotal(f) (black line), correction on the instrument input (blue ar-
rows). 

3. Theoretical Background 

Figure 1. Open-cell experimental set-up in transmission configuration.

After absorption and excitation of the sample structural units, thermal energy is re-
leased through a non-radiative relaxation process, causing changes in the temperature
profile of the sample. Periodic excitation generates a periodic change in the temperature
distribution of the sample, which leads to periodic change in the pressure in the microphone
hole that serves as a photoacoustic cell [32]. The sample is placed directly on the photoa-
coustic cell. The pressure changes are very small, ~10−6 bar, but the MC60 microphone,
due to its sensitivity, detects their amplitudes and phase deviations from excitation optical
signals recorded by the photodiode at each modulation frequency. The photoacoustic re-
sponse is finally given in an amplitude-phase characteristic in a wide range of frequencies,
from 10 Hz to 20 kHz.

The open photoacoustic cell [32], is formed so that the inside of the microphone
represents a cell. Thus, the measurement takes place with a minimum volume, which
enables the recording of weak sound signals. In the measuring set-up from Figure 1, the
computer sound card (Intel 82,801 Ib/ir/ihhd) is used for making the lock-in amplifier. The
sampling of the modulation frequencies is programmed in a regular logarithmic equidistant
step. The photoacoustic response recorded in this way is suitable for the analysis of silicon
samples up to 1 mm thick, with layers of thin-films with a thickness of up to several 100 nm,
or the analysis of thin layers of multilayer structures.

One of the problems of photoacoustics is that the entire measurement frequency range
is most often not used due to the influence of the accompanying measurement instrumen-
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tation in the low and high-frequency ranges. The influence of the used instruments is
reflected in the fact that the amplitude of the photoacoustic signal of the sample is distorted
in the low and high frequency parts, and the phase shifts its position, as is shown in Figure 2.
With the developed methodology of removing the instrumental influence [35–40], from
the microphone to the accompanying electronics, it was shown that it is possible from the
recorded photoacoustic response S(f ) to obtain the photoacoustic signal δptotal(f ), with a
wide frequency range of 20 to 20 kHz, which can be used for further precise characteriza-
tion [36–40]. The instrumental influence in the photoacoustic experiment can be described
by the transfer function H(f ), which distorts the photoacoustic signal of the sample δptotal(f ),
in the following way:

S( f ) = δptotal( f )H( f ) (1)

H( f ) = He
total( f )Ha

total( f ) (2)

The form of the function H( f ) = He
total( f )Ha

total( f ) used for filtering in the low-
frequency part represents the transfer functions, which characterize the influences of the
microphone and accompanying electronics:

He
total( f ) = − ωτc1

(1 + iω · τc1)
· ω τc2

(1 + iω · τc2)
, (3)

where time constants are τc1 = (2πfc1)−1 and τc2 = (2πfc2)−1, the attenuation factor is
δj (j = c3, c4), the peak frequency is denoted byωc3 and cut- byωc4 (ω = 2πf ) (blue arrows,
Figure 2). The function of form Ha

total( f ) is used for filtering in the high-frequency part. It
is a combination of second-order transfer functions:

Ha
total( f ) =

ω2
c3

ω2
c3 + δc3iω−ω2

+
ω2

c4
ω2

c4 + δc4iω−ω2
, (4)

The correction procedure of the experimentally recorded photoacoustic response of
multilayer samples produces a signal that can be further analyzed using a theoretical model
and all frequency ranges of the measurement.

Materials 2023, 16, x FOR PEER REVIEW 4 of 17 
 

 

( ) ( ) ( )e a
total totalH f H f H f=  (2)

The form of the function ( ) ( ) ( )e a
total totalH f H f H f=  used for filtering in the low-frequency 

part represents the transfer functions, which characterize the influences of the microphone 
and accompanying electronics: 

( ) ( ) ( ) ,
11 2

2

1

1e
total

c

c

c

c

ii
fH

τω
τω

τω
τω

⋅+
⋅

⋅+
−=

 
(3)

where time constants are τc1 = (2πfc1)−1 and τc2 = (2πfc2)−1, the attenuation factor is δj (j = 
c3,c4), the peak frequency is denoted by ωc3 and cut- by ωc4 (ω = 2πf) (blue arrows, Figure 

2). The function of form ( )a
totalH f  is used for filtering in the high-frequency part. It is a 

combination of second-order transfer functions: 

( ) ,2
4

2
4

2
4

2
3

2
3

2
3a

total ωωδω
ω

ωωδω
ω

−+
+

−+
=

ii
fH

cc

c

cc

c
 

(4)

The correction procedure of the experimentally recorded photoacoustic response of 
multilayer samples produces a signal that can be further analyzed using a theoretical 
model and all frequency ranges of the measurement. 

 
Figure 1. Open-cell experimental set-up in transmission configuration. 

101 102 103 104
10-4

10-2

100

A
m

pl
itu

de
 A

 (a
.u

.)

Modulation frequency f (Hz)

 corrected PAS
 experimental signala)

Exp measured PAS of two-layer sample:
TiO2 on Si substrate

 

101 102 103 104
0

90

180

270
Exp measured PAS of two-layer sample:
TiO2 on Si substrate

Ph
as

e 
ϕ 

(d
еg

)

Modulation frequency f (Hz)

 corrected PAS
 experimental signalb)

 
Figure 2. Frequency dependence of (a) amplitude and (b) phase of experimentally measured pho-
toacoustic signal TiO2 placed on Si substrate (red asterisk) and the corresponding amplitude and 
phase of the photoacoustic signal δptotal(f) (black line), correction on the instrument input (blue ar-
rows). 

3. Theoretical Background 

Figure 2. Frequency dependence of (a) amplitude and (b) phase of experimentally measured photoa-
coustic signal TiO2 placed on Si substrate (red asterisk) and the corresponding amplitude and phase
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3. Theoretical Background

Using uniform illumination of the two-layer sample (Figure 3) with a modulated
light source, the electromagnetic radiation is absorbed and produces a periodic change in
the thermal state of both the thin-film and the substrate. The layer of TiO2 is considered
dielectric because there is no effect of photogenerated charge carriers due to the larger
energy gap of TiO2 in comparison to the photon energy of the exciting beam, while the
photogenerated charge carriers affect the temperature profile of the silicon substrate T2(z,f ).
Temperature changes of the non-illuminated side of the sample T2(l,f ) and the temperature
gradient between the illuminated and non-illuminated sides of the sample causes the
change in the thermodynamic state in the air behind the sample. Such fluctuations create
three different components of sound that result from thermal transfer from the elastic
bending of the sample (composite piston theory) that the microphone detects as a total
photoacoustic signal δptotal(f ), defined as [10,11,21,30,63–66]:

δptotal( f ) = δpTD( f ) + δpTE( f ) + δpPE( f ), (5)

where f is the modulation frequency, and δpTD(f ), δpTE(f ) and δpPE(f ) are the thermodif-
fusion (TD), thermoelastic (TE) and plasmaelastic (PE) photoacoustic signal components,
respectively. The thermodiffusion component arises as a result of periodic heating of the
non-illuminated surface of the sample, which periodically heats the air layer, causing it to
periodically expand and contract. The periodic expansion and contraction of the air layer
create a disturbance that is detected by the microphone. The thermoelastic component
arises due to the temperature gradient between the illuminated and non-illuminated sides
of the sample, which leads to the bending of the sample. Due to the modulation of the
illumination, the bending is periodic, which pushes the pressure in the air that is detected
by the microphone. The plasmaelastic component is caused by the photogeneration of
carriers due to illumination, which leads to the additional bending of the sample, caused
by a concentration gradient of charge carrier that pushes the pressure in the air which is
then detected by the microphone. These components can be written as [10,11,21,30,63–66]:

δpTD( f ) =
p0γg

σglc
T2(l2, f )

T0
, (6)

δpc( f ) =
γg p0

V0

Rs∫
0

2πrUz,c(r, z)dr c = TE, PE (7)

where γg is the adiabatic constant, p0 and T0 represent the standard pressure and temper-
ature of the air in the microphone, σg = (1 + i)/µg, µg is the thermal diffusion length of
the air, lc is the photoacoustic cell length, T2(l2,f ) is the dynamic temperature variation at
the substrate rear (non-illuminated) surface [10,11,21,30,63–66] (see Appendix A), V0 is the
open photoacoustic cell volume and Uz,c(r,z) is the sample displacement along the z-axes
(see Appendix B).

The total photoacoustic sound signals δptotal(f ), (Equation (5)) are usually represented
using its amplitudes A(f ) and phases ϕ(f ). Therefore, δptotal(f ), can be written as a complex
number in the form:

δptotal( f ) = A( f )eiϕ( f ), (8)

where i is the imaginary unit. The theoretically calculated photoacoustic signal δptotal(f ) is
comparable to the experimentally recorded amplitude and phase from which the instrumen-
tal influence has been removed (Equations (1)–(4)). Thus, by analytically developing the
model and numerical simulations, a standard method can be used for making the base of
signals required for neural networks. The application of neural networks in photoacoustics
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for characterization requires an adjusted value of amplitude in order to be comparable with
the values of phase. A formula used for this purpose has a form:

Ascale( f ) = 20 log10 A( f ). (9)

The theoretically determined photoacoustic signal δptotal(f ), is compared with the
experimentally recorded amplitude and phase, and is used for material characterization.
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sample radius, T1(z,f ) and T2(z,f ) is the temperature distribution in the thin-film and substrate.

4. Networks Structure

The structure of the networks used to characterize the thin-films on the substrate is
shown in Figure 4. All networks used in this paper have the same structure: 2 × 72 input
neurons (72 amplitudes and 72 phases) and 15 neurons in the hidden layer. The three
networks, labeled NN1, NN2 and NN3, have one neuron each in the output layer that
serves to predict the l1, αT1 and DT1 thin-film parameters, respectively. The network
designated as NN4 has three neurons in the output layer that simultaneously predict all
three mentioned parameters. The bases formed for the training of the first three networks
were made individually (Base 1, Base 2 and Base 3), while the training base NN4 (Base 4)
was made by merging all three individual bases [67–70].

Materials 2023, 16, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 4. A representation of the structure of a single−layer neural network used for the training 
and prediction of TiO2 thin−film parameters. 

5. Formation of the Networks Training Bases 
The accuracy of the neural network largely depends on the selection of the basis for 

training, testing and validation. The bases have been obtained numerically using Equa-
tions (5)–(9). It is assumed that all these signals are generated by the Si substrate and TiO2 
thin-film two-layer system presented in Figure 3. All bases consist of 41 photoacoustics 
and one basic. The rest of them were obtained by changing 10% of the TiO2 thin-film pa-
rameters. The basic parameters as a system property that affects the photoacoustic signal 
include: geometric (thickness), thermal (thermal diffusivity, coefficient of linear expan-
sion) and electronic, which depend on the level of doping and the purity of Si and the 
properties of the TiO2 thin-film, which are shown in Table 1, with standard temperature 
and pressure. Base 1 was formed for NN1 training, changing the thickness of TiO2 film in 
the range of l1 = (475–525) nm

 
with a step of 5 nm. Base 2 was formed for NN2 training, 

obtained by changing the coefficient of thermal expansion of TiO2 film in the range of α1 
= (1.045–1.55) × 10−5 K−1 with a step of 5 × 10−8 K−1. Base 3 was formed for NN3 training, 
changing the thermal diffusivity of TiO2 film in the range of D1 = (3.515–3.885) × 10−6 m2s−1 
with a step of 18.5 × 10−8 m2s−1. Base 4 was formed for NN4 training, obtained by collecting 
3 × 41 signals from all three previously mentioned bases. Since all bases are very similar, 
we will show only one of them, Base 4, bearing in mind that, by one photoacoustic signal, 
we mean two curves presented in the networks: one for amplitude and another for phase 
(Equation (9) and Figure 5). 

By displaying the photoacoustics of a silicon substrate thickness of l2 = 30 μm, with 
different applied layers l1 of TiO2 thin-film, it is observed that there is no clear visual dif-
ference in the frequency dependence of the amplitudes, A, and that the factor of precise 
characterization by neural networks can be a visible difference in signal phases, φ, espe-
cially in the range from 103 Hz to 20 kHz, shown in Figure 5. The difference that exists in 
the phases is sufficient to train neural networks NN1-4 on the amplitude-phase character-
istics and to correctly determine the parameters of a thin layer that is two orders of mag-
nitude thinner than the substrate. 

Table 1. Values of basic parameters used for PA simulation TiO2 thin-film deposed on Si substrate. 

Parameters Labels Values 
Air thermal diffusivity Dg[m2s−1] 2.0566 × 10−5 
Air thermal conductivity kg[W(mK)−1] 0.0454 

Figure 4. A representation of the structure of a single−layer neural network used for the training
and prediction of TiO2 thin−film parameters.



Materials 2023, 16, 2865 7 of 16

The training process involved neural network training on theoretical signal Bases 1–4,
amplitude-phase characteristics and the connection with the parameters of the thin-film, per-
formed by an algorithm that uses statistical models of machine learning that enable prediction,
as shown in Figure 4. In the prediction process, thin-film parameters are determined from the
test signal or the experimentally recorded photoacoustic signal.

5. Formation of the Networks Training Bases

The accuracy of the neural network largely depends on the selection of the basis
for training, testing and validation. The bases have been obtained numerically using
Equations (5)–(9). It is assumed that all these signals are generated by the Si substrate
and TiO2 thin-film two-layer system presented in Figure 3. All bases consist of 41 pho-
toacoustics and one basic. The rest of them were obtained by changing 10% of the TiO2
thin-film parameters. The basic parameters as a system property that affects the photoa-
coustic signal include: geometric (thickness), thermal (thermal diffusivity, coefficient of
linear expansion) and electronic, which depend on the level of doping and the purity of
Si and the properties of the TiO2 thin-film, which are shown in Table 1, with standard
temperature and pressure. Base 1 was formed for NN1 training, changing the thickness
of TiO2 film in the range of l1 = (475–525) nm with a step of 5 nm. Base 2 was formed
for NN2 training, obtained by changing the coefficient of thermal expansion of TiO2 film
in the range of α1 = (1.045–1.55) × 10−5 K−1 with a step of 5 × 10−8 K−1. Base 3 was
formed for NN3 training, changing the thermal diffusivity of TiO2 film in the range of
D1 = (3.515–3.885) × 10−6 m2s−1 with a step of 18.5 × 10−8 m2s−1. Base 4 was formed for
NN4 training, obtained by collecting 3 × 41 signals from all three previously mentioned
bases. Since all bases are very similar, we will show only one of them, Base 4, bearing in
mind that, by one photoacoustic signal, we mean two curves presented in the networks:
one for amplitude and another for phase (Equation (9) and Figure 5).

Table 1. Values of basic parameters used for PA simulation TiO2 thin-film deposed on Si substrate.

Parameters Labels Values

Air thermal diffusivity Dg[m2s−1] 2.0566 × 10−5

Air thermal conductivity kg[W(mK)−1] 0.0454
Relaxation time of air τg[s] 2 × 10−10

Air adiabatic index γg 1.4223
Si Thermal diffusivity DT2[m2s−1] 9 × 10−5

TiO2 Thermal diffusivity DT1[m2s−1] 3.7 × 10−6

Si Thermal conductivity k2[Wm−1K−1] 150.0
TiO2 Thermal conductivity k1[Wm−1K−1] 11.0
Si Thermal expansion coefficient αT2[K−1] 2.6 × 10−6

TiO2 Thermal expansion coefficient αT1[K−1] 1.1 × 10−5

Si absorption coefficient β2 2.58 × 105

TiO2 absorption coefficient β1 1.8 × 105

Si reflexing coefficient R2 0.3
TiO2 reflexing coefficient R1 0.2
Si Young’s modulus Ey2 1.37 × 1011

TiO2 Young’s modulus Ey1 1.0 × 1011

Si Poison coefficient v2 0.35
TiO2 Poison coefficient v1 0.30

By displaying the photoacoustics of a silicon substrate thickness of l2 = 30 µm, with
different applied layers l1 of TiO2 thin-film, it is observed that there is no clear visual
difference in the frequency dependence of the amplitudes, A, and that the factor of precise
characterization by neural networks can be a visible difference in signal phases, ϕ, especially
in the range from 103 Hz to 20 kHz, shown in Figure 5. The difference that exists in the
phases is sufficient to train neural networks NN1-4 on the amplitude-phase characteristics
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and to correctly determine the parameters of a thin layer that is two orders of magnitude
thinner than the substrate.
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Figure 5. (a) Amplitudes, A, and (b) phases, ϕ, of the two−layer model: TiO2 thin−films deposited
on the Silicon substrate, obtained by changing parameters of the thin−film, diffusivity DT1, expansion
αT1 and thickness l1.

6. Results and Discussion

The training results of the NN1-4 neural networks are given in Figure 6a–d, showing
the Mean Square Error (MSE) of training, test and validation, depending on the number of
epochs, and obtaining the best training performance. From each base for NN1-3 training,
four signals were extracted for later testing. In the case of NN4 training, 3 × 4 = 12 signals
were also extracted from Base 4 for later testing. Network training interruption is activated
by the deviation criterion of Mean Square Error training in relation to validation and testing.
The performance achieved by network NN1 is 4.1292 × 10−4 in 5 epochs, network NN2
achieved 9.5639 × 10−6 in 5 epochs, network NN3 achieved 3.6325 × 10−5 in 3 epochs and
network NN4 achieved 9.8558× 10−6 in 7 epochs. It can be seen by comparing these values
that the best performance was obtained by the NN4 and NN2 networks for determining
all three parameters and expansion, respectively. The NN1 network obtained the weakest
performance for determining the thin-film thickness parameter.
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6.1. Networks Testing with In-Step, Out-Step of Photoacoustic Signal

As we said in the previous paragraph, four signals that did not participate in the
training were separated from each training base of the NN1-3 networks. A similar thing
was carried out with the training base for the NN4 network, from which 12 signals were
separated and did not participate in the training. All four networks were tested with these
“in-step” signals and the results of such tests are shown in Tables 2 and 3. Relative error
predictions (%) presented in these tables show that the most accurate networks are NN2
for the prediction of αT1 and NN4 for the prediction of DT1.

Table 2. Relative (%) error prediction of TiO2 thin-film parameters on 4 test photoacoustic signals
that are in step by NN1, NN2 and NN3 networks.

Type of Network NN1 NN2 NN3

Base 1 2 3

Parameter lNN1
1 αNN2

T1 DNN3
T1

TiO2 film no.1 0.4060 0.1041 0.3424
TiO2 film no.2 0.1681 0.1270 0.1526
TiO2 film no.3 0.1414 0.0690 0.2317
TiO2 film no.4 0.0658 0.1583 0.0764

Relative % error 0.1953 0.1146 0.2008

Table 3. Relative (%) error prediction of TiO2 thin-film parameters NN4 on 4 signals from three bases
“in-step” of training network.

Type of Network NN4

Base 1 2 3

Parameters lNN4
1 αNN4

T1 DNN4
T1 lNN4

1 αNN4
T1 DNN4

T1 lNN4
1 αNN4

T1 DNN4
T1

TiO2 film no.1 0.7878 0.8782 0.4542 0.3579 0.1592 0.9610 0.2958 0.0951 0.0152
TiO2 film no.2 0.0130 0.2941 0.3980 0.4126 0.4990 0.0564 0.0165 0.1059 0.2139
TiO2 film no.3 0.0187 0.2002 0.1512 0.7414 1.1077 1.3738 0.0932 0.0016 03694
TiO2 film no.4 0.1578 0.0588 0.2811 0.4206 0.8822 0.8822 0.1298 0.1278 0.0663

Relat % error 0.2443 0.3578 0.3211 0.4831 0.6434 0.8183 0.1325 0.0831 0.1661
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Our next step is to check the quality of the prediction of neural networks with “out-
step” signals—signals outside the training step but within the framework of parameter
changes. For this purpose, 12 signals were randomly generated. Four for each changed
parameter l, αT and DT individually. The prediction results for all four networks are given
in Table 4 (NN1-3) and Table 5 (NN4). It is interesting to note that the NN1 network
gives the worst prediction of sample thickness, while the NN4 network gives relatively
satisfactory predictions for all three parameters.

Table 4. Relative (%) error prediction of TiO2 thin-film parameters NN1-3 on 4 signals from three
bases “out of step” of training network.

Type of Network NN1 NN2 NN3

Parameter lNN1
1 αNN2

T1 DNN3
T1

TiO2 film no.1 2.4890 0.0186 0.0777
TiO2 film no.2 2.4584 0.0293 0.0927
TiO2 film no.3 5.4138 0.0011 0.2593
TiO2 film no.4 4.8427 0.0031 0.0116

Relative % error 3.8099 0.0130 0.1103

Table 5. Relative (%) prediction error of TiO2 thin-film parameters by NN4 for 4 signals “out of step”.

Type of Network NN4

Base 1 2 3

Parameter lNN4
1 αNN4

T1 DNN4
T1 lNN4

1 αNN4
T1 DNN4

T1 lNN4
1 αNN4

T1 DNN4
T1

TiO2 film no.1 0.1184 0.0422 1.33552 0.0173 0.0081 0.0164 0.0070 0.0049 0.0245
TiO2 film no.2 0.0422 0.0116 1.3516 0.0055 0.0183 0.0153 0.0182 0.0140 0.0104
TiO2 film no.3 0.0066 0.0599 1.3880 0.0080 0.0058 0.0270 0.0097 0.0215 0.0104
TiO2 film no.4 0.1213 0.0044 1.3685 0.0781 0.0225 0.0520 0.0245 0.0238 0.0059

Relative% error 0.0721 0.0368 1.3658 0.0272 0.0137 0.0277 0.0149 0.0161 0.0128

6.2. Networks Testing with Experimental Signals

The final part of our analysis is to test the ability to predict our networks on experi-
mental signals. For this purpose, we measured, by the standard method of an open photoa-
coustic cell, the frequency response of a circular plate of a two-layer sample (silicon + TiO2).
Amplitudes and phases of the measured response (red stars) are shown in Figure 1. By
removing the influence of the measuring chain (measuring instruments, especially detec-
tors), corrected amplitudes and phases (black line) are obtained which can be analyzed
by Equations (1)–(4) by the standard fitting method. The results of such analysis of the
corrected signal give values of silicon (l1 = 30 µm), which corresponds to standard sili-
con substrate (thin plate) thicknesses, titanium-dioxide (l2 = 500 nm), which corresponds
to standard thin-film thicknesses, and radius R = 3 mm, while other parameters corre-
spond to the parameters from Table 1, with an error of 5%. The corrected signals from
Figure 2 are further presented in our networks and the results of their prediction are given
in Tables 6 and 7. The relative error in these tables is the result of comparing network
predictions and standard fitting of the existing theoretical model.

Table 6. Parameters lNN1
1 , αNN2

T1 and DNN3
T1 obtained by prediction of NN1-3, with relative (%) errors

are calculated according to the parameters obtained from standard photoacoustics techniques.

Parameter lNN1
1 αNN1

T1 DNN3
T1

NN exp prediction 4.8018 × 102 nm 1.0955 × 10−5 K−1 3.57913 × 10−6 m2s−1

relative (%) error 3.9644 0.4066 2.9372
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Table 7. Parameters lNN4
1 , αNN4

T1 and DNN4
T1 obtained by prediction of NN4, with relative (%) errors

are calculated according to the parameters obtained from standard photoacoustics techniques.

Parameter lNN4
1 αNN4

T1 DNN4
T1

NN4 exp prediction 4.8690 × 102 nm 1.1166 × 10−5 K−1 3.7189 × 10−6 m2s−1

relative (%) error 2.6196 1.5106 0.5105

Based on the results of the prediction by neural networks NN1–3, (Table 6), the most
accurate network is NN2 in the prediction of the thermal expansion coefficient αNN2

T1 of a
thin-film TiO2, with a relative (%) error <1%, while the precision in the prediction of the
thermal diffusivity DNN3

T1 and thickness lNN1
1 is with relative (%) errors <5%.

In the simultaneous prediction of the parameters of thickness lNN4
1 , thermal expansion

coefficient αNN4
T1 and thermal diffusivity DNN4

T1 (Table 7), the NN4 network gives satisfactory
results comparable to the prediction results of NN1–3.

Despite the expectations based on the consideration of the theoretical model, which is
reflected in the small visual difference of the amplitude characteristics and stratification
of signal phases in the high-frequency part (1–20) kHz, neural networks based on the
coupled amplitudes and phases in the frequency domain (20–20 k) Hz can determine the
parameters of the thin-layer TiO2. The results of neural networks show that more precise
and accurate results are obtained in networks in which multiple parameters are determined
at the same time (Tables 3 and 5) than in networks in the prediction of individual parameters
(Tables 2 and 4). This conclusion is also valid for the prediction of the thin-film parameter
from the experimental results, where the reduction of the relative % error in the prediction
of the network NN4 in relation to NN1–3 is observed, which can represent one of the
methods of optimizing the work of networks in prediction the parameter of thin-films. It
should be noted that the derived model is made for the expected ranges that each of the
three parameters of the thin layer can have. If some of the parameters are outside this
range, e.g., thickness of the thin-film, it could lead to incorrect determination of all three
parameters of the thin-film using the proposed model.

This consideration is particularly valid due to the analysis of a thin layer of TiO2
placed on a well-characterized substrate, in this case, silicon. The method of characteriza-
tion of TiO2 developed in this way can be applied and analyzed on other well-characterized
optically transparent and non-transparent substrates. By applying TiO2 to optically trans-
parent substrates, and by characterizing it, we obtain a suitable material for protecting the
detectors of the measuring system.

7. Conclusions

The results presented in this paper indicate one very important fact—if in the measure-
ment range, there is an influence of the thin-film on the total photoacoustic signal, neural
networks easily can recognize these changes, even if they are negligibly small. Theoretical
analyses of two-layer samples Si (substrate) and TiO2 (thin-film) showed relatively easy
recognition of changes in the film of a thickness of ±5 nm, with the coefficient of thermal
expansion of ±5 × 10–8 K–1 and coefficient of thermal diffusion of ±18.5 × 10–8 m2s–1.

In addition, it has been shown that neural networks for predicting thin-film parameters
can be well-trained with a relatively small database, either to predict one or three parame-
ters simultaneously. Furthermore, all networks give approximately the same accuracy of
prediction in both theoretically generated signals and experimental data. Therefore, it can
be recommended that, for the analysis of thin-films on different substrates, it is enough
to form one network that simultaneously predicts several of its parameters instead of a
separate network for determining each parameter.
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Appendix A. Temperature Distributions in Two-Layer Sample

Periodic temperature distributions in the thin-film (label 1 forTiO2) and substrate
(label 2 for Si) illuminated by the modulated light source (Figures 1 and 3) can be obtained
by solving the thermal-diffusion equations in the form [21,31,59,62]:

∂2T1(z, f )
∂z2 − iω

DT1
T1(z, f ) = − 1

k1
β1(1− R1)I0e−β1z (A1)

and
∂2T2(z, f )

∂z2 − σ2
2 T2(z, f ) = −

εg

k2τ2
np2(z, f )− β2 I

k2
·

ε− εg

ε
e−β2z (A2)

where ω = 2πf, f is the modulation frequency, I0 is the incident light intensity,
I = (1− R1)(1− R2)e−β1l1 I0, R1 is the film reflection coefficient, R2 is the substrate re-
flection coefficient, σ1 =

√
iω/DT1 is the film complex thermal diffusivity, DT1 is the film

thermal diffusion coefficient, σ2 =
√

iω/DT2 is the substrate complex thermal diffusivity,
DT2 is the substrate thermal diffusion coefficient, k1 is the thin-film heat conduction coeffi-
cient, k2 is the substrate heat conduction coefficient, β1 is the film absorption coefficient,
β2 is the substrate absorption coefficient, and δnp2(z,f ) is the substrate photo-generated
minority carrier dynamic density component (Equation (A2)).

The general solutions of Equations (A1) and (A2) can be written in the form [21,31,59,62]:

T1(z, f ) = A1eσ1z + A2e−σ1z + A3e−β1z, (A3)

and
T2(z, f ) = B1eσ2z + B2e−σ2z + B3δnp(z, f ) + B4e−β1z, (A4)

where the constants A3, B3 and B4 are given as:

A3 = − β1 I0(1− R1)

k1
(

β2
1 − σ2

1
) , B3 = −

εg

k2τp2

(
σ2

2 −
1
L2

2

) , B4 = − β2(1− R1)(1− R2)e−β1l1 I0

ε
(

β2
2 − σ2

2
) (

B3

Dp2
−

ε− εg

k2

)
.

Here L2 =

√
Dp2τp2

1+iωτp2
is the complex minority carrier diffusion length, Dp2 is the

diffusion coefficient of minority carriers (holes p in the n-type substrate), and τp2 is the bulk
minority carrier lifetime. Constants A1, A2, B1 and B2 can be found solving the boundary
conditions [21,31,59,62]:
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(a)− k1
∂T1(z, f )

∂z

∣∣∣∣
z=−l1

= 0, (b) T1(0, f ) = T2(0, f ),

(c)− k2
∂T2(z, f )

∂z

∣∣∣∣
z=0

= sFnp2(0, f )εg − k1
∂T1(z, f )

∂z

∣∣∣∣
z=0

,

(d)− k2
∂T2(z, f )

∂z

∣∣∣∣
z=l2

= −sRnp2(l2, f )εg, (A5)

where sF and sR are the substrate surface recombination speeds at the front (z = 0) and rear
(z = l2) surfaces, respectively.

Based on our previous investigations, the analysis of the two-layer optical properties
shows that the multiple optical reflections can be neglected in the Si substrate [31], but
must be taken into account in the case of thin TiO2 film. This is the reason why the film
reflection coefficient R1 is calculated here using [21,62]:

R1 = rF + (1− rF)
2rR ·

e−2β1l1

1− rFrRe−2β1l1
, (A6)

where rF and rR are the front and rear thin-film reflectivity coefficients, respectively.

Appendix B. Two-Layer Sample Displacement along the Heat-Flow Axes

The Uz,c(r,z) of the two-layer sample at the back surface, z = l2, important in transmis-
sion photoacoustic measurements, can be written in a general form as:

Uz,c(r, z) =
Cc

2

(
R2

s − r2
)

, c = TE, PE, (A7)

where Rs is the sample radius and

CTE = 6
A1 + A2 + E1E2[αT1l2(2MT1 − l2NT1) + αT2l1(2MT2 + l1NT2)]

E2
1 l4

1 + E2
2 l4

2 + 2E2E1l2l1
(
2l2

2 + 3l2l1 + 2l2
1
) , (A8a)

CPE = 6dnE2
[E1l1(2Mn + l1Nn) + E2l2(2Mn − l2Nn)]

E2
2 l4

2 + E2
1 l4

1 + 2E2E1l2l1
(
2l2

2 + 3l2l1 + 2l2
1
) . (A8b)

Here A1 = E2
1 l1(2MT1 + l1NT1)αT1, A2 = E2

2 l2(2MT2 − l2NT2)αT2, E1 and E2 are
Young’s modulus of the film and substrate, respectively, dn is the coefficient of electronic
deformation and MT1, MT2, Mn, NT1, NT2 and Nn are defined as:

MT1 =

0∫
−l1

z · T1(z, f )dz,MT2 =

l2∫
0

z · T2(z, f )dz,Mn =

l2∫
0

z · δnp2(z, f )dz, (A9)

NT1 =

0∫
−l1

T1(z, f )dz.NT2 =

l2∫
0

T2(z, f )dz,Nn =

l2∫
0

δnp2(z, f )dz, (A10)

where T1(z, f ) is the temperature in the thin-film and T2(z, f ) is the temperature in the
substrate and δnp2(z, f ) is the photo-generated minority carrier density. The MT1, and
MT2 are the first moments of the temperature change, and the Mn is the first moment of
the photo-generated minority carriers change along the z-axis. The NT1 and NT2 are the
average temperature changes and Nn is the average photo-generated minority carriers
change along the z-axes [21,31,59,62].
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10. Todorović, D.M.; Nikolić, P.M.; Dramićanin, M.D.; Vasiljević, D.G.; Ristovski, Z.D. Photoacoustic frequency heat-transmission

technique: Thermal and carrier transport parameters measurements in silicon. J. Appl. Phys. 1995, 78, 5750–5755. [CrossRef]
11. Todorović, D.M.; Nikolić, P.M. Semiconductors and Electronic Materials Progress in Photothermal and Photoacoustic, Science and

Technology Chapter 9; Optical Engineering Press: New York, NY, USA, 2000; Volume PM74, pp. 273–318. ISBN 9780819435064.
12. Delgado, L.P.; Figueroa-Torres, M.Z.; Ceballos-Chuc, M.C.; García-Rodríguez, R.; Alvarado-Gil, J.J.; Oskam, G.; Rodriguez-Gattorno, G.

Tailoring the TiO2 phases through microwave-assisted hydrothermal synthesis: Comparative assessment of bactericidal activity.
Mater. Sci. Eng. C 2020, 117, 111290. [CrossRef]

13. Trejo-Tzab, R.; Alvarado-Gil, J.J.; Quintana, P.; Bartolo-Pérez, P. N-doped TiO2 P25/Cu powder obtained using nitrogen (N2) gas
plasma. Catal. Today 2012, 193, 179–185. [CrossRef]

14. Ceballos-Chuc, M.C.; Ramos-Castillo, C.M.; Alvarado-Gil, J.J.; Oskam, G.; Rodríguez-Gattorno, G. Influence of Brookite Impurities
on the Raman Spectrum of TiO2 Anatase Nanocrystals. J. Phys. Chem. C 2018, 122, 19921–19930. [CrossRef]

15. Patil, M.K.; Shaikh, S.; Ganesh, I. Recent Advances on TiO2 Thin Film Based Photocatalytic Applications (A Review). Curr. Nanosci.
2015, 11, 271–285. [CrossRef]

16. Mandelis, A.; Batista, J.; Pawlak, M.; Gibkes, J.; Pelzl, J. Space charge layer dynamics at oxide-semiconductor interfaces under
optical modulation: Theory and experimental studies by non-contact photocarrier radiometry. J. Phys. IV 2005, 125, 565–567.
[CrossRef]

17. Somer, A.; Camilotti, F.; Costa, G.F.; Bonardi, C.; Novatski, A.; Andrade, A.V.C.; Kozlowski, V.A., Jr.; Cruz, G.K. The thermoelastic
bending and thermal diffusion processes influence on photoacoustic signal generation using open photoacoustic cell technique.
J. Appl. Phys. 2013, 114, 063503. [CrossRef]

18. Dubyk, K.; Chepela, L.; Lishchuk, P.; Belarouci, A.; Lacroix, D.; Isaiev, M. Features of photothermal transformation in porous
silicon based multilayered structures. Appl. Phys. Lett. 2019, 115, 021902. [CrossRef]
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measuring system on the photoacoustic signal amplitude and phase in frequency domain. Facta Univ. Ser. Phys. Chem. Technol.
2016, 14, 9–20. [CrossRef]
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66. Galović, S.; Šoškić, Z.; Popović, M.; Čevizović, D.; Stojanović, Z. Theory of photoacoustic effect in media with thermal memory.
J. Appl. Phys. 2014, 116, 024901. [CrossRef]

67. Ma, Y.; Liu, X.; Gu, P.; Tang, J. Estimation of optical constants of thin film by the use of artificial neural networks. Appl. Opt. 1996,
35, 5035. [CrossRef]

68. Jakatdar, N.H.; Niu, X.; Spanos, C.J. Neural network approach to rapid thin film characterization. In Flatness, Roughness, and
Discrete Defects Characterization for Computer Disks, Wafers, and Flat Panel Displays II; SPIE: Bellingham, WA, USA, 1998. [CrossRef]

69. Castellano-Hernandez, E.; Sacha, G.M. Characterization of thin films by neural networks and analytical approximations. In
Proceedings of the 12th IEEE International Conference on Nanotechnology (IEEE-NANO), Birmingham, UK, 20–23 August 2012.
[CrossRef]

70. Fan, L.; Chen, A.; Li, T.; Chu, J.; Tang, Y.; Wang, J.; Zhao, M.; Shen, T.; Zheng, M.; Guan, F.; et al. Thin-film neural networks for
optical inverse problem. Light Adv. Manuf. 2021, 2, 395–402. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/0042-207X(95)00063-1
http://doi.org/10.1016/j.ijthermalsci.2022.107661
http://doi.org/10.1088/1742-6596/278/1/012003
http://doi.org/10.1063/5.0015898
http://doi.org/10.1007/s12633-022-01723-6
http://doi.org/10.1007/s10765-012-1229-6
http://doi.org/10.1007/s10765-014-1568-6
http://doi.org/10.1007/s11433-013-5121-6
http://doi.org/10.1063/5.0015657
http://doi.org/10.1063/1.5100837
http://doi.org/10.1088/0031-8949/2012/T149/014018
http://doi.org/10.1063/1.4885458
http://doi.org/10.1364/AO.35.005035
http://doi.org/10.1117/12.304402
http://doi.org/10.1109/nano.2012.6321943
http://doi.org/10.37188/lam.2021.027

	Introduction 
	Experimental Procedure 
	Theoretical Background 
	Networks Structure 
	Formation of the Networks Training Bases 
	Results and Discussion 
	Networks Testing with In-Step, Out-Step of Photoacoustic Signal 
	Networks Testing with Experimental Signals 

	Conclusions 
	Appendix A
	Appendix B
	References

