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G.; Hirunthanawat, J.; Martins, M.;
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Abstract: Direct liquid fuel cells represent one of the most rapidly emerging energy conversion
devices. The main challenge in developing fuel cell devices is finding low-cost and highly active
catalysts. In this work, PET bottle waste was transformed into nitrogen-doped graphene (NG)
as valuable catalyst support. NG was prepared by a one-pot thermal decomposition process of
mineral water waste bottles with urea at 800 ◦C. Then, NG/Pt electrocatalysts with Pt loadings as
low as 0.9 wt.% and 1.8 wt.% were prepared via a simple reduction method in aqueous solution
at room temperature. The physical and electrochemical properties of the NG/Pt electrocatalysts
are characterized and evaluated for application in direct borohydride peroxide fuel cells (DBPFCs).
The results show that NG/Pt catalysts display catalytic activity for borohydride oxidation reaction,
particularly the NG/Pt_1, with a number of exchanged electrons of 2.7. Using NG/Pt composite
in fuel cells is anticipated to lower prices and boost the usage of electrochemical energy devices.
A DBPFC fuel cell using NG/Pt_1 catalyst (1.8 wt.% Pt) in the anode achieved a power density
of 75 mW cm−2 at 45 ◦C. The exceptional performance and economic viability become even more
evident when expressed as mass-specific power density, reaching a value as high as 15.8 W mgPt

−1.

Keywords: graphene-based electrocatalyst; PET bottles waste; nitrogen-doped graphene; Pt-based
electrocatalyst; borohydride oxidation; direct liquid fuel cells

1. Introduction

Eco-friendly energy storage and conversion devices are severely needed to solve
worldwide energy crises. A fuel cell is a device that converts chemical energy into electricity.
Hydrogen is primarilyconsidered to be an energy carrier. In the 1970s, liquid hydrogen
was used by NASA as a fuel for space shuttles, and more recently it was employed in fuel
cell electric vehicles (FCEVs) [1]. Hydrogen is typically used as compressed gas, which
has several issues, such as purification, transportation, and storage, which may lead to
safety problems for mobile users. Complex hydrides, such as NaBH4, LiH, and NaH, are
known to be capable of storing hydrogen, which makes them a possible alternative to solve
this problem.
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The direct borohydride peroxide fuel cell (DBPFC) gained significant interest as a
strong candidate for different portable applications due to simple liquid fuel handling and
its high energy density [2–4]. In particular, DBPFCs present much higher theoretical voltage
(E0 = 3.01 V) than that of the DMFC (E0 = 1.21 V) and of the H2-O2 PEMFC (E0 = 1.23 V).
DBPFC systems have other advantages over conventional hydrogen/oxygen fuel cells,
such as long cycle life and environmental safety. Their anode reaction is the direct oxidation
of sodium borohydride (NaBH4) in sodium hydroxide (NaOH) solution. Theoretically, the
electrooxidation of NaBH4 releases eight electrons, as shown in Equation (1). However, due
to the unavoidable hydrolysis of borohydride (BH4

−) on the electrocatalyst, the number
of released electrons is always less than eight [5,6]. The cathodic reaction when hydrogen
peroxide is used as an oxidant is provided by Equation (2). Thus, the overall fuel cell
reaction occurring in a DBPFC is provided by Equation (3).

BH4
− + 8OH− → BO2

− + 6H2O + 8e− E0 = −1.24 V vs. SHE, (1)

H2O2 + 2H+ + 2e− → 2H2O E0 = 1.77 V vs. SHE, (2)

NaBH4 + 4H2O2 → NaBO2 + 6H2O E0 = 3.01 V. (3)

Achieving a complete eight-electron transfer from BOR is virtually impossible due to
the quasi-spontaneous hydrolysis of BH4

− taking place at the electrode surface, generat-
ing hydroxyborohydride (BH3OH−). Hence, the actual reaction of BOR is provided by
Equation (4), where n refers to the number of exchanged electrons:

BH4
− + nOH− → BO2

− + (n − 2)H2O + (4−(n/2))H2 + ne−. (4)

The kinetics and mechanism of borohydride oxidation depend on several variables,
such as the concentration of NaBH4 [7], the catalyst materials, and temperature [8]. The
borohydride oxidation reaction (BOR) was studied in different materials, including noble
and non-noble metals, i.e., platinum (Pt) [9], gold (Au) [10], silver (Ag) [10,11], palla-
dium (Pd) [12], and nickel (Ni) [13]. Au was considered for a long time as the most
Faradaic-efficient material for BOR, with the advantage of being simultaneously inactive
for the competing BH4

− hydrolysis reaction, allowing an anodic transfer of close to eight
electrons. However, BOR kinetics at Au electrodes are somewhat sluggish. Pd is also
electrocatalytically active for both the oxidation of BH4

− and its intermediates, as well as
for H2 generation/oxidation; however, reaction kinetics are still slower than for Pt [14].
Ni has been reported as a low-cost BOR catalyst ensuring a low (below 0 V vs. RHE)
open-circuit potential (OCP) and enabling good net BOR currents [15]. Alloying or mixing
different group metals, such as PdNi or CuNi, has increased the activity and selectivity for
BOR [16–19].

Among most typical catalysts, Pt is usually the benchmark material for many elec-
trochemical energy conversion and storage applications, including as an electrocatalyst
for BOR, owing to its good performance on the fast exchange of between two and four
electrons during BH4

− oxidation [20]. Although it also causes the hydrolysis of BH4
− [21],

many studies have indicated that Pt is one of the most attractive metal catalysts. Along
with high performance, Pt comes with a higher price. For this reason, intensive research
is underway to develop new highly active catalysts that can use smaller amounts of Pt.
Generally, Pt is anchored on low-cost carbon support to reduce the electrocatalyst cost, in-
crease the catalyst surface area, and create abundant active sites that enhance electrocatalyst
performance [21–24].

Graphene (G) has proven its efficiency as an excellent 2D support material due to its
superior conductivity and unparalleled layers structure with a very high specific surface
area and good chemical and thermal stability [25–27]. These qualities led to graphene being
used as a support material in energy applications [28,29]. Furthermore, by doping the
graphene structure with N atoms, the electron density of the adjacent C atoms is rearranged,
prompting an electrophilic center in the neighboring N atoms, and changing the geometry
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and enhancing the electron donor character of the prepared nitrogen-doped graphene
(NG) [30,31].

The present study has been motivated by the need to develop sustainable carbon-
supported electrocatalysts with low cost for fuel cell applications. At the same time,
removing non-degradable plastic waste accumulating in the world associated with hu-
mankind’s excessive plastic use in everyday life is crucial. Considering that plastic is
suitable for conversion to carbon material, as it is carbon-rich and the derived carbon
contains surface functional groups that enhance its electrochemical performance, efforts
are underway toward the valorization of this waste and further use in energy conversion
devices [32,33]. Herein, NG is produced by the thermal decomposition of waste PET bottles
with urea, and its performance as a stable, high surface area support for Pt nanoparticles
is assessed for BOR. The proposed NG synthesis has many advantages over previously
followed approaches, including straightforward reaction setup and operational steps, an
effective, simple, quick, and environmentally friendly one-pot method that can be easily
scaled up, and promising industrial applications. The likelihood of fuel cell commercial-
ization may increase if large-scale, low-cost production is feasible. The electrochemical
characterization of the synthesized NG/Pt composite electrocatalysts was performed by
cyclic voltammetry (CV) and linear scan voltammetry (LSV), demonstrating the potential
application of these materials in DBPFC anodes.

2. Results and Discussion
2.1. Morphological and Structure Characterization of Graphene Doped-N and NG/Pt Catalysts

The surface structure of electrocatalysts greatly influences the catalytic reaction; there-
fore, the morphology and surface structure of prepared materials were explored using
various characteristic tools. From the XRD pattern for prepared NG, NG/Pt_0.5, and
NG/Pt_1, as shown in Figure 1a, a slight shifting of the NG/Pt_1 peak corresponding
to NG was observed, and that may be due to the introduction of Pt nanoparticles inside
NG layers, which alters the interlayer spacing [34]. Moreover, obvious diffraction peaks
at 2θ values of 26◦, 42.3◦ and 44.3◦ are observed, which are indexed to (002), (100), and
(101) reflections, respectively, corresponding to the standard C peak (JCPDS No. 75-1621).
Additionally, these results indicate that Pt atoms are dispersed uniformly onto NG in the
form of small clusters, and no obvious diffraction peaks arising from the possible impurity
phases for Pt are observed in X-ray, which may suggest the quantity of Pt used is very small
and cannot be detected by XRD [35].

The FTIR spectra of NG, NG/Pt_0.5, and NG/Pt_1 samples are shown in Figure 1b. IR
spectra of the three samples exhibit a distinct broad absorption at approximately 3450 cm−1

corresponding to the stretching vibration mode of –OH, and the graphitic nature of both
samples can be evidenced by the presence of in-plane C=C vibration at 1680 cm−1, which
is an intrinsic characteristic of the sp2 graphitic materials [36–38], and the peak at approxi-
mately 1680 cm−1 was assigned to the C=O bond. There are no obvious characteristic peaks
for Pt.

The adsorption–desorption isotherms of N2 for synthesized samples appear to be
characteristic IUPAC-type IV nature, Figure 1c. A hysteresis loop at relative pressure from
0.4 to 1.0 confirmed the mesoporous structure, while a vertical tail near the relative pressure
of 1 witnessed the presence of micropores. Table 1 shows the specific surface area with the
mean pore diameter for the prepared samples. The distribution of the average pore sizes
observed by the BJH method revealed the highest number of pores of large diameter in the
case of NG/Pt_1 (Figure 1d). This, in addition to the largest surface area, can provide a
large number of active sites in case of NG/Pt_1 and thus boost its catalytic activity.
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Figure 1. (a) XRD patterns, (b) FTIR spectra, (c) N2 adsorption–desorption isotherms, and (d) average
diameter distribution of NG, NG/Pt_0.5, and NG/Pt_1 samples.

Table 1. BET analysis of prepared NG, NG/Pt_0.5, and NG/Pt_1 samples.

Surface Area (BET) (m2 g−1) Mean Pore Diameter (nm)

NG 187 3.17
NG/Pt_0.5
NG/Pt_1

181
303

3.54
4.75

The morphology of the as-prepared materials was investigated using transmission
electron microscopy (TEM). NG/Pt_1 sample (Figure 2a) shows irregular, non-uniform
distributed sheets of NG, while Pt nanoparticles appear as dark spots corresponding to
semi-spherical particles packed between the NG layers. The size of Pt nanoparticles ranged
between 6.6 and 12.2 nm, with the average size of the Pt nanoparticles of 8.6 nm, as
measured from TEM images using ImageJ software. Furthermore, the selected area electron
diffraction (SAED) pattern was used for further analysis of NG/Pt_1 sample (Figure 2b).
The SAED pattern shows dispersed bright spots and honeycomb rings overlay each other,
confirming the multilayered and polycrystalline structure of NG/Pt_1. In addition, a
comparably weaker spot of Pt adjoining the carbon lattice is noticeable.

The XPS survey spectra of NG, NG/Pt_0.5, and NG/Pt_1 samples are shown in
Figure 3a. The main lines of C 1s, O 1s, and N 1s are clearly visible in all three spectra.
Additionally, the Pt 4f line is present in two samples doped with Pt, with the Pt 4f line
of the NG/Pt_1 sample having higher intensity as expected. High-resolution spectra of
C 1s and N 1s for the NG sample are shown in Figure 3b,c, respectively. C 1s spectra
can be deconvoluted into five peaks characteristic of graphene [39]. A narrow peak at
285.1 eV, corresponds to sp2 hybridized double carbon bond C=C, while a peak at 284.8 eV
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corresponds to sp3 hybridized single carbon bond C-C. The peak at 258.8 eV can be assigned
to either C-O or C-N bond or a mixture of both signals. The peak at 286.8 eV originates from
the double carbon–oxygen bond C=O, and a final peak at 288.6 eV most probably originates
from the O=C-OH bond since the FTIR spectroscopy analyses (Figure 1b) indicate the
presence of the –OH group. Peaks corresponding to C-O and C-N bonds are almost at the
same position and, therefore, cannot be accurately deconvoluted [40,41]. Relatively low
peak intensity of oxygen-containing groups indicates that the graphene is highly reduced.
Nitrogen N 1s spectrum is deconvoluted into three peaks. Peaks at 398.6 eV, 399.2 eV, and
400.3 eV correspond to pyridinic, pyrrolic, and graphitic nitrogen groups [40,41].
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The high-resolution spectra of Pt 4f for NG/Pt_0.5 and NG/Pt_1 samples are shown
in Figure 4a,b, respectively. For NG/Pt_0.5 sample, the Pt 4f peak contains only one
component shown in a typical doublet. The peak at 75.7 eV corresponds to PtO2 from Pt
4f7/2, while the peak at 79.8 eV corresponds to PtO2 from Pt 4f5/2 [42,43]. Highly upshifted
positions of peaks indicate the presence of highly oxidized Pt4+. The peak position shows an
even higher upward shift than reported in [43] due to the substrate effect of doped nitrogen
into graphene. For NG/Pt_1 sample, Pt 4f line is deconvoluted into two components.
The first component at 72.4 eV and 75.9 eV corresponds to PtO from Pt 4f7/2 and Pt 4f5/2
peaks, respectively. The second component at 74.7 eV and 77.9 eV corresponds to PtO2
from Pt 4f7/2 and Pt 4f5/2 peaks, respectively [43,44]. Pt present in this sample is slightly
less oxidized, showing the presence of both Pt2+ and Pt4+ species. All four peaks match
the positions reported in the literature [43,44], showing only a slight upward shift of less
than 0.5 eV in all cases. That indicates a slightly lower impact of the substrate on electron
binding energy with an increased amount of Pt.
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2.2. Electrochemical Measurements

The BOR catalytic performance of the support and the two NG/Pt electrocatalysts
prepared was initially investigated by scanning comparative CVs in 2 M NaOH with
0.03 M NaBH4 and in pure 2 M NaOH solution. The CVs of NG/Pt catalysts depicted in
Figure 5a,b show the absence of anodic peaks in the BOR potential region in NaOH solution,
implying that the current generated during CV measurements run in the presence of BH4

−

originated from its oxidation. Moreover, in the scanned potential range, CVs of NG/Pt
catalysts showed one oxidation peak (ca. 0.6 V and 0.7 V for NG/Pt_1 and NG/Pt_0.5,
respectively) in the positive scan. An additional sharp oxidation peak was evident in the
reverse scan, more pronounced for NG/Pt_1. This peak can be attributed to the oxidation
of byproducts originating from the BH4

− hydrolysis reaction, such as oxidation of adsorbed
BH3OH− formed during the anodic scan and staying adsorbed on the oxidized electrode
surface until being reactivated by reduction in the surface oxides. BH4

− electrooxidation
is a complex reaction with several oxidation peaks: a sharp oxidation peak (a1) around
0.9 V and a broad oxidation hump (a2) around 1.4 V on the direct scan, followed by a
well-defined oxidation peak at 1.15 V on the reverse scan. Peak a1 is attributed to the direct
oxidation of BH4

− as an eight-electron process, while wave a2 and peak c1 are attributed to
the oxidation of BH3OH− generated as an intermediate during BH4

− oxidation. Oxidation
peak at reverse scan appears in the potential region where Pt oxides are reduced and
the electrode surface is reactivated [45]. Thus, there is a clear competition between the
BH4

− oxidation and its catalytic hydrolysis in the case of NG/Pt anode catalyst, Scheme 1.
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H2 molecules generated during hydrolysis may leave the catalyst’s surface or be further
oxidized on the same (or another) Pt site [8,10,46].
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NG/Pt_1 exhibited higher BOR catalytic performance, reaching the current density of
ca. 4.5 mA cm−2. The enhanced catalytic activity of NG/Pt_1 partially originates from the
higher Pt loading. Still, it should be kept in mind that the Pt loading is rather low in the case
of both tested electrocatalysts (0.9 wt.% Pt and 1.8 wt.% Pt for NG/Pt_0.5 and NG/Pt_1,
respectively). However, as XPS analysis revealed, NG/Pt_1 sample is less oxidized and it is
found in both PtO and PtO2 states. On the other hand, NG/Pt_0.5 sample is more oxidized
and is found mostly in PtO2 state, with Pt in oxidized form being less active for direct
BH4

− oxidation. Moreover, the specific surface area of NG/Pt_1 (303 m2 g−1) was notably
higher than that of NG/Pt_0.5 (181 m2 g−1), providing a higher number of active sites for
BOR to occur. Both features are responsible for a better performance of NG/Pt_1 compared
to NG/Pt_0.5, with the latter exhibiting an apparent capacitive behavior in NaOH solution.
It should be mentioned that the N-doped graphene support was also tested for BOR but
did not show activity.

The reaction kinetics were additionally examined using RDE LSVs (Figure 6). The
corresponding j−1 vs. ω−1/2 plots for the currents taken at 0.7 V are shown as inset of
Figure 6b. From the slope of j−1 vs. ω−1/2 plots and using the Koutecky–Levich equation,
n values were obtained. n values of 2.7 and 0.7 were obtained for NG/Pt_1 and NG/Pt_0.5,
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respectively. The value determined for NG/Pt_1 is comparable with typical n values
reported in the literature for BOR at Pt or Pt alloys (two to six electrons) [47].
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Poisoning of Pt-based electrocatalysts during BH4
− oxidation has been reported to be

pronounced, especially in BH4
− solutions of higher concentration [48,49]. Still, no activity

loss was observed during BOR experiments within this study. This suggests that using the
N-doped graphene support stabilizes Pt nanoparticles, ensuring their uniform distribution
throughout the catalyst’s operation. The Pt active centers are cleaned of the adsorbed
intermediates upon the intermediates’ further oxidation.

To evaluate the performance of an NG/Pt_1 anode for a DBPFC, fuel cell tests were
performed using a Pt mesh cathode and an NG/Pt_1 anode. Figure 7 depicts the polar-
ization and power density curves of a single cell with NG/Pt_1 anode operating at three
different temperatures, 25, 35, and 45 ◦C.
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As expected, at a higher temperature, the kinetics of the fuel cell reactions were
faster, leading to a significant improvement in cell performance. At 45 ◦C, the power
density value reached a maximum of 75 mW cm−2 at 1.8 V. The exceptional performance
of NG/Pt_1 and great economic viability become even more evident when expressed
as mass-specific power density. Namely, a mass-specific peak power density value as
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high as 15.8 W mgPt
−1 was reached at a cell voltage value of 1.7 V and a current density

of 48.2 A mgPt
−1. Obtained DBPFC results were compared with those reported in the

literature [49–52]. Table 2 summarizes the DBPFCs results involving Pt and different
carbon supports. Notably, the mass-specific performance of DBPFC with NG/Pt_1 clearly
surpasses the ones reported in the literature. High mass-specific power density evidences
the benefits of using the herein-prepared N-doped graphene as a carbon support that
facilitates charge transfer. Its high specific surface area promotes fast charge transfer,
enhancing the conductivity path and thus leading to high electrical conductivity [8]. The
high specific surface area comes from a higher inter-layer distance (or d-spacing). It has
been shown that BOR kinetics and its completion are influenced to a great extent by the
mass transport of reactants and intermediates to/from the electrode material’s active
sites [53,54]. The large pores and layered structure of the herein-prepared NG facilitate both
the transport of active species within the electrocatalyst’s porous structure to active sites
and the escape of generated hydrogen (thus cleaning the active sites from the gas bubbles).

Table 2. Summary of DBPFCs results employing carbon-supported Pt-based electrocatalysts.

Anode Separator Fuel Oxidant T/◦C Pmax/W
mgPt−1

jmax/
mAcm−2 Source

Pt/PPy2-C12% (0.04 mgPt cm−2) Nafion 117 1 M NaBH4 + 4 M NaOH 5 M H2O2 + 1.5 M HCl RT1 0.57 70.3 [8]
Pt/PPy2-C20% (0.04 mgPt cm−2) Nafion 117 1M NaBH4 + 4 M NaOH 5 M H2O2 + 1.5 M HCl RT1 0.75 76.0 [8]
Pt/PPy2-C35% (0.06 mgPt cm−2) Nafion 117 1 M NaBH4 + 4 M NaOH 5 M H2O2 + 1.5 M HCl RT1 0.79 120 [8]

Pt/NPC3 (4 mgPt cm−2) Nafion 117 1 M NaBH4 + 3 M NaOH 2 M H2O2 + 0.5 M H2SO4 RT1 0.01 120 [10]
Pt/CB4 (0.5 mgPt cm−2) Nafion 117 0.1 M NaBH4 + 6 M NaOH 0.1 M H2O2 RT1 0.01 18.0 [47]
PtNi/C (1 mgPtNi cm−2) Nafion 117 1 M NaBH4 + 2 M NaOH 2 M H2O2 + 0.5 M H2SO4 45 0.57 100 [46]

NG/Pt_1 (0.02 mgPt cm−2) Nafion 117 1 M NaBH4 + 4 M NaOH 5 M H2O2 + 1.5 M HCl 45 15.8 137 This
study

RT1—room temperature; PPy2—polypyrrole; NPC3—nanoporous carbon; CB4—carbon black.

3. Materials and Methods
3.1. Preparation

Nitrogen-doped graphene was synthesized from PET plastic water bottle wastes by
pyrolyzing them with urea at 800 ◦C for 1 h, following a procedure similar to that reported
by Elessawy et al. [34]. The final resulting powder was collected and ground as a fine pow-
der. NG/Pt catalysts with metal loadings of 1.8 and 0.9 wt.% Pt were prepared by adding
the required amounts of NG powder and chloroplatinic acid solution (H2PtCl6·8 wt.%H2O)
into a beaker under gentle stirring for 1 h. Then, 1 mL of 1 M NaBH4/1 M NaOH solution
was added with gentle stirring for 24 h. The resultant catalyst was filtered and rinsed with
de-ionized water until no Cl was identified, then dried for 12 h at 60 ◦C. All chemicals were
acquired from Sigma-Aldrich (St. Louis (MO), USA) and used as received, unless otherwise
specified.

3.2. Characterization

The basic characterization analysis for prepared catalysts was carried out, including
determining the crystal size from XRD (Shimadzu-7000, Kyoto, Japan) with CuKα beam and
a scan speed of 4◦ per min, the surface functional groups by using FTIR spectrophotometer
(Shimadzu FTIR-8400S, Kyoto, Japan) with spectra range from 400 to 4000 cm−1. The
elemental analysis of prepared catalysts was measured by using EDAX, and morphology
was assessed by TEM (JEOL JEM-1230, Tokyo, Japan). The composition of samples was
examined by XPS (XP50M X-ray source for Focus 500 and PHOIBOS 100/150 analyzer with
AlKα source (1486.74 eV) at a 12.5 kV and 32 mA) and data were analyzed using SPECS
Systems (SPECS GmbH, Berlin Germany). The average pore volume and surface area were
obtained using BET and BJH adsorption techniques.

3.3. Electrochemical Measurements

The catalytic ink was prepared by ultrasonically dispersing the electrocatalyst (5 mg)
into a polyvinylidene difluoride (PVDF) in N-methyl pyrrolidone (NMP) solution (5 wt.%,
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125 µL) for 30 min. The working electrode was prepared by depositing catalyst ink (3 µL)
onto a glassy carbon electrode surface. The working electrode was left in the oven for
drying at 75 ◦C overnight. A typical three-electrode setup was used in the experiment.
The platinum coil was used as a counter electrode and a saturated calomel electrode (SCE,
Hanna Instruments, Woonsocket (RI), USA) was used as a reference electrode.

To examine the catalysts behavior in 2 M NaOH at room temperature, 2 CVs were
recorded in the range from –1.1 V to 0 V at 10 mV s−1. To study the BOR at prepared
catalysts at room temperature, 0.03 M of NaBH4 in 2 M NaOH solution was prepared
immediately before the measurements. Three cycles were run from the open circuit potential
(OCP) to 0 V at 10 mV s−1. Linear scan voltammetry with a rotating disk electrode was
run in the range from OCP to 0 V at 10 mV s−1 and different rotation rates between 0 and
2400 rpm. Finally, fuel cell tests were conducted under the optimized conditions described
in our previous study using 1 M NaBH4 in 4 M NaOH and 5 M H2O2 in 1.5 M HCl solutions
as an anolyte and catholyte, respectively [51].

4. Conclusions

PET bottle waste was successfully valorized into N-doped graphene as electrocatalyst
support. Subsequently, NG/Pt electrocatalysts containing only 0.9 wt.% Pt and 1.8 wt.%
Pt were prepared and characterized by XRD, FTIR, XPS, and TEM. N2-sorption analysis
revealed a notably higher specific surface area of NG/Pt_1 that provides a higher number
of active sites, thus contributing to its higher activity.

The results obtained from CV and LSV measurements revealed that the catalysts
performed well towards BOR. The NG/Pt_1 catalyst exhibited higher activity, evidenced by
a number of exchanged electrons of ca. 2.7. Moreover, DBPFC operating at three different
temperatures (25, 35, and 45 ◦C) employing an NG/Pt_1 catalyst showed a maximum
power density of 45 mW cm−2 at 25 ◦C, with a significant improvement with a temperature
increase and peak power density of 75 mW cm−2 at 45 ◦C. Moreover, a mass-specific
power density as high as 15.8 W mgPt

−1 was reached. Considering the economic aspects of
these catalysts and the obtained results, it can be concluded that NG/Pt catalysts are very
promising materials for application as anode catalysts in DBPFCs.
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