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Abstract: Markers used in everyday clinical practice cannot distinguish between the permanent
impairment of renal function. Sodium and potassium values and their interdependence are key
parameters in addition to volemia for the assessment of cardiorenal balance. The aim of this study was
to investigate volemia and electrolyte status from a clinical cardiorenal viewpoint under consideration
of renal function utilizing artificial intelligence. In this paper, an analysis of five variables: B-type
natriuretic peptide, sodium, potassium, ejection fraction, EPI creatinine-cystatin C, was performed
using an algorithm based on the adaptive neuro fuzzy inference system. B-type natriuretic peptide
had the greatest influence on the ejection fraction. It has been shown that values of both Na+ and
K+ lead to deterioration of the condition and vital endangerment of patients. To identify the risk
of occurrence, the model identifies a prognostic biomarker by random regression from the total
data set. The predictions obtained from this model can help optimize preventative strategies and
intensive monitoring for patients identified as at risk for electrolyte disturbance and hypervolemia.
This approach may be superior to the traditional diagnostic approach due to its contribution to more
accurate and rapid diagnostic interpretation and better planning of further patient treatment

Keywords: kidney; heart; electrolytes; congestion; cardio-renal syndrome

1. Introduction

Renal dysfunction is a common finding in patients with primary and secondary heart
disease, and the most common reason for repeated hospitalizations is cardiac decompensa-
tion and hypervolemia. It is also known that the therapy used to correct congestion and
improve the pumping function of the heart also affects kidney function [1,2]. Therefore,
an approach for careful monitoring of renal function and electrolyte levels in addition to
assessing volemia status has been included in the guidelines for good clinical practice for
the treatment of patients with heart failure. However, the therapy suggested in guideline
books often leads to underdosed or underused what due to side effects. The most common
side effects of drugs used in the treatment of cardiac decompensation are renal dysfunc-
tion and electrolyte disturbance [3–5]. The basic parameters for monitoring patients with
heart failure are markers of renal function and markers of water–electrolyte balance [6,7].
Sodium (Na+), as an extracellular electrolyte and osmotically active molecule, plays an
important role in regulating the water balance. Disorders in serum sodium values are
common and are an independent predictor of recurrent hospitalizations due to cardiac
decompensation and death after discharge from hospital treatment [8]. Potassium (K+)
is an intracellular ion whose role is reflected in the electrical stimulation of muscle and
nerve cells. For normal cells to function, a difference between extracellular and intracellular
potassium concentration levels must exist. Disorders of serum potassium are common
in patients with heart failure. In patients with normal glomerular filtration rate (GFR)
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values, serum potassium disturbances occur as a part of renin angiotensin aldosterone axis
disorder. The disorder is reflected in an imbalance between the sensitivity of tubular cells to
aldosterone and the activation of the neurohumoral axis. High mortality has been reported
in patients with heart failure who have lower serum potassium values than in those with
high serum potassium values [9–11]. Assessment of renal function is very important for
the assessment of outcomes in patients with primary and secondary heart disease and
numerous comorbidities. Deterioration of renal function is associated with frequently
repeated hospitalizations and prolonged hospital treatment [12]. In clinical practice, serum
creatinine is used daily as a marker to assess the strength of glomerular filtration using
various equations. Creatinine is fully filtered in the glomeruli and minimally secreted in the
proximal tubules. For this reason, at the present, in practice, creatinine is the best marker
of glomerular filtration, with relatively constant plasma concentration. It does not show
reliability as a marker of the early stages of acute kidney damage, because its significance
depends on the volume state and the intensity of catabolic processes. Glomerular filtration
is also assessed using cystatin C in the CKD-EPI creatinine-cystatine C equation (chronic
kidney disease epidemiology collaboration). Cystatin C (CyC) is a marker of not only
functional, but also structural damage to the kidneys. Cystatin C in patients with essential
hypertension can be a marker of subclinical, functional, and structural damage of the heart,
as well as a marker of early renal vascular damage. Therefore, cystatin C may be a marker
of a subclinical phase of cardiorenal disease [13,14]. Hypervolemia is usually manifested by
the appearance of peripheral edema, accumulation of fluid in the abdomen and an increase
in intra-abdominal pressure, after an increase in pressure in the right atrium and a decrease
in the functional reserve of the glomeruli. The consequent decrease in the functional reserve
of the glomerulus occurs due to the activation of the atrial renal reflex during the increase
in circulatory volume and the increased filling pressure of the atria. In chronic conditions of
hypervolemia, the natriuresis control mechanism regulated by atrial natriuretic peptide and
arginine vasoperesin is ineffective and leads to a paradoxical reduction in diuresis. In this
case, the reduced intensity of glomerular filtration and diuresis is a consequence of reduced
blood flow through the kidney, which occurs due to vasoconstriction of the afferent arteriole
after increased sodium absorption in the proximal tubules [15,16]. Natriuretic peptides
are biomarkers that have been suggested by guideline books to aid in the noninvasive
diagnosis of hypervolemia and heart failure. The determination of the B-type natriuretic
peptide (BNP) concentration and its precursor have the greatest significance in the diagno-
sis of heart failure and are independent predictors of mortality in these patients. Chronic
heart failure involves resistance to released NT-proBNP (N-teminal (NT)-pro hormone
BNP), as well as deficits in the active from of BNP. NT-proBNP is also elevated in patients
who develop acute kidney injury (AKI), due to acute heart failure, since the end-diastolic
stretching of cardiomyocytes leads to its production. Elevated levels of NT-proBNP are
commonly found in patients with heart failure and reduced glomerular filtration [17,18].

Current research in the field of knowledge-based systems known as synthetic intelli-
gent systems and software algorithms is based on establishing a diagnosis of chronic kidney
disease or estimating the time it takes for kidney function to deteriorate using equations
for estimating the GFR in pre-dialysis or transplant patients. In some studies, a system was
created to monitor the deterioration of kidney function in combination with risk factors
that affect the progression of chronic kidney disease. Risk factors for the occurrence of
heart diseases were also analyzed and adverse cardiovascular events during percutaneous
coronary interventions were evaluated in some studies [19–21]. So far, not a single software
algorithm has been developed in connection with the prediction of complex problems in
patients with combined heart and kidney diseases. Due to the lacking standard of key
elements for the diagnosis and prognosis for clinicians to detect cardiorenal syndrome
examination, the adaptive neuro fuzzy inference system (ANFIS) proposed in this paper
would be a powerful tool to learn the representation of key characteristics for identifying
relationships between kidney and heart.
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The aim of our paper was to analyze volemia, electrolytes, and renal function in heart
failure, using an algorithm based on the ANFIS, an intelligent approach to renal and heart
function monitoring [22–25].

The work is structured in five sections. Section 1 is the introductory part where the
basic reasons for the research are presented. Section 2 presents methods in which the
research algorithm is presented, and the basic settings of the model are given. Section 3
contains results regarding how data were created and the model was trained. In this section,
the statistical inference of the distributions of the input and output flow to the system is
presented. Section 4 contains a discussion. The paper ends with conclusions in which
directions for future research are given.

2. Materials and Methods
2.1. Measuring Data

This is a prospective cross-sectional study comparing subjects with associated renal
and heart failure or with the existence of a “de novo” or previously diagnosed, clinically
manifested cardiovascular disease and with the existence of AKI or the presence of
chronic kidney disease at different stages of evolution. The study group included
90 subjects older than 18 years of both sexes with heart and kidney damage; 52 men
(57.77%) and 38 women (42.22%).

All patients who had malignant disease of any etiology, acute and chronic inflamma-
tory diseases of other organ systems and clinical manifestations of thyroid disease, were
excluded from the study. Blood samples for routine hematological analysis and biochemi-
cal analysis after centrifugation for 15 min at 1000 rpm and 5 mL of serum were analyzed
by a standard method with commercially available tests. Na+, K+ electrolyte values were
measured on a Roche Diagnostics Corporation 9181® Indianapolis, IN, USA analyzer
with reference values for Na+ 135–150 mmol/L and for K+ 3.5–5.5 mmol/L. Plasma
BNP concentration was determined by enzymatic immunoassay quantitative chemilu-
minescent microparticle immunoassay (CMIA) technology on an Abbott Laboratories®

Germany apparatus. Antiserum-NT-proBNP microparticles were added to the plasma
sample, and the reaction was determined as the ratio of the amount of NT-proBNP to
the relative light units (RLU). NT-proBNP concentration is expressed in pg/mL. The
limit value for NT-proBNP is 300 pg/mL was used as a reference in patients with GFR
less than 15 mL/min/1.73 m2 calculated using CKD-EPI cystatin C formula. A refer-
ence NT-proBNP cutoff value of less than 100 pg/mL was used in patients with GFR if
CKD-EPIcystatin C > 90 mL/min/1.73 m2. Serum cystatin C (CysC) was determined
in plasma using a commercial ELISA (the enzyme-linked immunosorbent assay) kit.
Determination of serum cystatin C-based GFR was performed using a reference formula
using a calculator [26]. Echocardiographic examinations were performed using a Toshiba
Powervision 6000 Tochiba Co® Tokyo Japan device with a multifrequency phase array
transducer 2.0–4.5 MHz transthoracic approach in compliance with all recommendations
of good clinical practice [27]. This review determined EF% as a functional parameter
using the Teicholz formula in M mode or Simpson’s rule in volumetric calculation where
normal EF values are greater than 50%, cutoff normal values between 40% and 49%, and
low values less than 40% [28].

2.2. Neuro-Fuzzy Method

In this paper, we wanted to assess the impact of the occurrence of an imbalance of
serum electrolytes (Na+, K+), BNP, ejection fraction (EF), and CKD-EPIcystatin C equa-
tions for GFR (glomerular filtration rate) on further monitoring or hospitalization of the
patient [29–31].

To analyze the given problem, we used the ANFIS-network type, which is supervised
learning with fuzzy logic that is similar to Takagi and Sugeno’s approach. The process of
learning a neural network with phase logic, shown in Figure 1, represents a complex struc-
tural learning of linking input parameters which do not have clearly defined boundaries
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and their impact with a certain degree of state severity in linking to target values as output
parameters [32,33].
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Figure 1. Representation of the ANFIS network used for training on BPU, Na+, K+ parameters with
the aim of obtaining EF (%) or CKD-EPIcystatin C as control parameters of cardiac and renal function.

2.3. Model Description

We used the structure of the ANFIS network, which we based on the connection
of input parameters: BNP (pg/mL), Na+ (mmol/L), and K+ (mmol/L) with one output
parameter EF (%) or CKD-EPIcystatin C (mL/min/1.73 m2) in back propagation (BP), as
shown in Figure 2. By normalizing with the min-max method [34–36], we adjusted the val-
ues of all parameters (input and output) to the range of values of the base parameters [0,1],
and thus removed the possibility of dominance of individual data due to approximation
and neglect of data values due to different orders of magnitude. Patient data were classified
into three groups of ANFIS database data: training data, testing data, and checking data.
The structure of the ANFIS network determines the manner and time of training. The
network consists of five hidden layers with different numbers of neurons [37–39]. The
neurons in the layers are related by weighting factors ωi, i = 1, . . . 27, which change and
adjust during training in the back propagation standard mean square error (MSE). The
input layer data (NT-proBNP, Na+ and K+) are adapted due to their range of optimal values
by distributing the trapezoidal membership function to the values of the neurons of the next
layer of the neural network. The influence of the trapezoidal membership function is such
that the value of the input parameter stratifies into three different areas. The NT-proBNP
parameter on

{
NT-proBNP1, NT-proBNP2, NT-proBNP3

}
, Na+ on the

{
Na+1 , Na+2 , Na+3

}
,
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and K+{K+
1 , K+

2 , K+
3
}

, by using reference values described in Section 2.1. The stratified
values of individual parameters NT-proBNP, Na+ and K+ are assigned to the phase of the
rule (fuzzy rule) of the form:

i f (NT-proBNP is NT-proBNPi) and
(

Na+ is Na+j
)

and
(
K+ is K+

k
)

then Vl =

c1 ·NT-proBNPi+c2 ·Na+j +c3 ·K+
k , i, j ork = {1, 2, 3}and l = 27.
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Figure 2. Estimation of ANFIS network of interdependence areas of parameter values: EF values
as a functional dependence (a) NT-pro BNP and K+, (b) BNP and Na+, (c) Na+ and K+, and CKD-
EPIcystatin C as a functional dependence (d) NT-proBNP and K+, (e) NT-proBNP and Na+ i (f) Na+
and K+.

The third layer normalizes the input value of a single neuron of the third layer with
the sum of all values of neurons of the third layer

ωl = ωl/
27

∑
m=1

ωm=1, l = 1, . . . 27
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The values normalized in this way are defined by the output membership function
(Outputmf), the sum of which determines the value of the output

Ol = ωlVl , l = 1, . . . 27

In the fifth layer, the final value of one output parameter is determined during training
as the sum of the values of the fourth layer,

27

∑
l=1

Ol =
27

∑
l=1

ωlVl

The selection of the output parameter is reduced to one and represents either the
CKD-EPIcystatin C or EF parameter. The structure of ANFIS requires that the training
time of the network is realistic during training in 1000 epochs with a tolerance error for a
mean square error (MSE) of 0.0005. This specifically selected structure with the parameters
NT-proBNP, Na+ and K+ leads to the accuracy of the formed network during training,
checking on test data (testing data, checking data) where checking is quite consistent and
varies in accuracy values of approximately 15% [40,41]. We believe that this is a satisfactory
variation in accuracy, although it should be investigated whether the optimization of the
proposed algorithm or some other algorithms could achieve a smaller variation in accuracy.

3. Results
3.1. Implementing the Model

The learning algorithm of ANFIS leads to the formation of a model by connecting
the given input and output parameters of the respondents. The ANFIS system formed
in this way encourages the use of neural networks in the earlier stages of disruption of
individual parameters and indicates the need for faster clinical processing of individual
subjects cases. Figure 2 indicates the dependence of one output parameter as a function of
two input parameters. The formed three-dimensional surfaces indicate the so-called neuro
fuzzy mapping that confirms the following regularities. The area between the green lines
indicates the value of K+ clinically stable subjects with certain normalized values of the
parameter K+ in the range from 0.20 to 0.60 (area between the green lines), Figure 2a,d,f.
Values of Na+ in the range of 0.44 to 1.00 (area between blue lines), Figure 2b,c,e, and
NT-proBNP in the range of 0.30 (yellow line) to 0.60 (red line), Figure 2a–c,e EF parameter
values below 0.5 (orange horizontal line) indicate patients with a serious adverse event,
while EF values above 0.5 indicate patients who are at risk of an adverse event, Figure 2a–c.
Values for CKD-EPIcystatin C below 0.58 (pink) indicate renal failure of varying degrees,
Figure 2d–f. The dominance of some colors shows that patients with parameters that
cause the appearance of yellow colors have heart failure with preserved ejection fraction
(HFpEF), while patients who have parameters on horizontal axes that lead to blue colors
have heart failure with reduced ejection fraction (HFrEF) and require greater supervision
and hospitalization (Figure 2) [42–45].

3.2. Characteristics of the Respondents

In this study, an ANFIS model based on a neural network with fuzzy logic was applied
to predict renal function and hydro electrolyte disturbance in patients with heart damage.
The usual statistical methods did not find a statistically significant difference in age between
healthy subjects who had an average age of 69.55 ± 32.01 years and subjects with heart and
kidney damage who had an average age of 70.72 ± 9.26 years (p = 0.286). No statistically
significant difference was found in the values of electrolyte status parameters shown in
Table 1, which includes min, max, mean, and standard deviation (SD) values, in subjects
with heart and kidney damage and in healthy subjects. A statistically significant increase
in NT-proBNP (p < 0.001) and cystatin C (p < 0.001) values was found between healthy
subjects and subjects with heart and kidney damage (Mann–Whitney U test).
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Table 1. Demographic and laboratory characteristics of respondents.

Parameters Na (mmol/L) K (mmol/L) NT-pro BNP
(pg/mL)

CystatinC
(mg/L) Age (Years)

Min. value 123.00 2.40 10.00 1.73 18.00
Max. value 150.00 7.80 5000.00 0.21 88.00
Mean 137.90 4.84 1275.77 3.33 65.98
SD 4.57 0.97 1533.89 0.825 15.74

Evaluation metrics are presented in Table 2, which shows the parameters of heart and
kidney function in all subjects. A statistically significant difference was found in the values
of EF (p < 0.001) and CKD-EPIcystatin C equation (p < 0.001) by analysis of healthy and
diseased subjects (Mann–Whitney U test).

Table 2. Glomerular filtration and functional status of the subjects’ hearts.

Parameters Min. Value Max. Value Mean SD

Na(mmol/L) 123 150 138 4.12
K(mmol/L) 2.4 7.8 4.85 0.88
NT-pro BNP (pg/mL) 10 5000 1292.10 252.00
EF% 12 75 72.8 15.04
EPI cystatin C(mL/min/1.73 m2) 14 146 50.20 37.88

4. Discussion

To obtain more accurate results, we used AI to classify the collected data. The central
tenet of AI techniques is to computationally automate logical judgment by extracting
general rules and patterns from large datasets. The wide range of soft computing techniques
are frequently used in system modeling and solving. Cardiorenal syndrome is a complex
syndrome characterized by salt and water retention and activation of various neurohumoral
mechanisms. Kidney and heart are interconnected by regulatory mechanisms that are
important for maintaining homeostasis in the body [46]. Disorder in the function of these
mechanisms is an introduction to the vicious circle of causes and consequences, which is
characterized by a higher probability of premature death and deterioration of kidney and
heart function [47]. Since this outcome is more common in cardiorenal syndrome than if
there is isolated heart and kidney damage, it is important to identify high-risk patients as
early as possible to apply preventive and therapeutic measures [48].

Type B natriuretic peptide (BNP) is a marker of neurohumoral stimulation whose
activity is associated with inhibition of sympathetic nerve activity and the renin angiotensin
system axis. NT-proBNP in healthy individuals, even in the case of dietary salt intake,
has a protective role for kidney and heart function, while in the early stages of heart and
kidney disease it induces natriuresis and diuresis, and in advanced stages of the disease
this neurohormone becomes ineffective in regulating hypervolemia. The explanation
lies in the fact that at the renal level, NT-proBNP at physiological concentrations acts by
increasing the strength of glomerular filtration and directly inhibits the tubuloglomerular
feedback response, which first inhibits sodium resorption at the distal tubule, and then
at the proximal tubule, reduces intrarenal vascular resistance, but has no effect on the
permeability of intrarenal blood vessels [49]. The consequence of the physiological action
of the NT-proBNPa molecule is an increase in the volume of excreted urine and an increase
in sodium excretion without affecting blood pressure and heart rate [50]. In addition,
NT-proBNP plays an important role in the prevention of chronic renal impairment in
patients with asymptomatic chronic heart failure due to its effect on intrarenal blood
flow. The paradoxical role of NT-proBNP in patients with heart failure by decreased
diuresis, natriuresis, and increased vasoconstriction leads to the deterioration of heart
and kidney function and general condition of the patient despite a significantly high
concentration of the biologically inactive form of circulating BNP [51]. In addition to
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the fact that the clearance of NT-pro BNP depends on several mechanisms that have not
been fully elucidated, it is certain that this protective counter regulatory neurohumoral
mechanism is ineffective in patients with heart and kidney damage [52]. The consequences
are salt and water retention, hypertension, concentric left ventricular hypertrophy, and
heart fibrosis. The endocrine function of the heart could theoretically be improved by
delaying the inactivation of cardiac natriuretic peptide hormones and thereby prolonging
their beneficial effects [53]. New research at the cellular level, which is related to the low
storage capacity for endoproteolytic maturation and processing into biologically active
peptides, would be useful in creating a new therapeutic approach compared to the previous
one [54].

We have described the typical (and) most common problems in the clinical model
of cardiorenal syndrome. Despite the high dynamic nature of progression of cardiorenal
syndrome, our model can accurately determine the presence of electrolyte disbalances
and hypervolemia. In our study, NT-proBNP was a useful biomarker for assessing the
progression of cardiac and renal dysfunction in our subjects with cardiorenal syndrome.
The results of our study showed that the overall trend of data verification in the network
with NT-proBNP, Na, and K that we formed is approximately 15%, with which subjects
can be classified according to the severity of hypervolemia, electrolyte disturbance and
renal function [55]. Electrolyte disturbance is a common finding in patients with heart
failure and a consequence of the use of diuretics and disorders of neurohumoral activa-
tion or a combination of these factors. Hyponatremia is common in patients with acute
cardiac decompensation due to dilution and impaired excretion of free water or as a conse-
quence of sodium depletion [56]. Hyperkalemia is often the result of the use of RAAS (the
renin-angiotensin-aldosterone system) blockers, mineralocroticode receptor antagonists, or
potassium-sparing diuretics. Hypokalemia is also a common finding and is a consequence
of magnesium deficiency and the use of Henle loop diuretics [57]. However, in addition to
hypokalemia, Henle’s loop diuretics can lead to hypovolemia and deterioration of renal
function, which requires a reduction in the administered dose of diuretics, which is the
basic and first drug for people with acute cardiac decompensation [58]. There is no stan-
dardized method in clinical practice that would detect the degree of decongesting during
hospitalization. Therefore, due to the lack of appropriate criteria for defining adequate
decongesting, patients require frequent check-ups in an outpatient setting, as in other
branches [59]. Assessing the vital risk of patients and the recurrence of decompensation
of patients with combined heart and kidney damage involves extensive and repeated
diagnosis, with much confusion in terms of determining the causes, consequences, and
further treatment planning even by very experienced doctors. This model may be superior
to the traditional diagnostic approach due to its contribution to more accurate and rapid
diagnostic interpretation and better planning of further patient treatment.

The way in which high values of EPIcistC and EF indicate the risk of adverse events is
shown in Figure 2a–f, dependent on the parameters of NT-proBNP, Na+, and K+ patients
based on ANFIS results. It has been shown that both low values of Na+ and K+ lead to
worsening of the condition and vital endangerment of patients.

To identify the risk of occurrence, the model identifies a prognostic biomarker by
random regression from the total data set. This research did not include patients with
cardiorenal syndrome who would require additional data preprocessing [59]. They require
a different approach and analysis in research that will take radiomics into account, rather
than the algorithmic application of a diagnostic methodology.

5. Conclusions

Serum potassium disturbances are associated with advanced heart failure and reduced
prognosis. The cardiorenal syndrome is used for the estimation of heart failure and kidney
disease. There are numerous factors that contribute to the maintenance of disturbed values
of potassium in cardiorenal syndrome. Cardiorenal syndrome is definitely independent of
many influences, and the balance of serum potassium is more important than sodium in
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cardiorenal syndrome. In this study, the potassium balance in cardiorenal syndrome was
analyzed by the ANFIS. ANFIS is suitable for nonlinear systems with highly redundant
data. Although there are encouraging advances around this unsolved clinical problem,
further investigation should consider the progressive inclusion of patients with advanced
renal impairment to allow a better understanding of the cardiorenal syndrome.

Our work aims to fill a gap by presenting a specific systematized predictive tool for
high-risk patients with associated heart and kidney damage. After rigorous validation, this
tool will help to predict serious adverse events before they occur and thus improve the
treatment outcome of these patients. The predictions obtained from this model can help
optimize preventive strategies and intensive monitoring for patients identified as at risk
for electrolyte disturbance and hypervolemia.
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