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Abstract: Multiple sclerosis (MS) is a chronic neurodegenerative disease caused by autoimmune-
mediated inflammation in the central nervous system. Purinergic signaling is critically involved
in MS-associated neuroinflammation and its most widely applied animal model—experimental
autoimmune encephalomyelitis (EAE). A promising but poorly understood approach in the treatment
of MS is repetitive transcranial magnetic stimulation. In the present study, we aimed to investigate
the effect of continuous theta-burst stimulation (CTBS), applied over frontal cranial bone, on the
adenosine-mediated signaling system in EAE, particularly on CD73/A2AR/A1R in the context of
neuroinflammatory activation of glial cells. EAE was induced in two-month-old female DA rats and
in the disease peak treated with CTBS protocol for ten consecutive days. Lumbosacral spinal cord
was analyzed immunohistochemically for adenosine-mediated signaling components and pro- and
anti-inflammatory factors. We found downregulated IL-1β and NF- κB-ir and upregulated IL-10
pointing towards a reduction in the neuroinflammatory process in EAE animals after CTBS treatment.
Furthermore, CTBS attenuated EAE-induced glial eN/CD73 expression and activity, while inducing
a shift in A2AR expression from glia to neurons, contrary to EAE, where tight coupling of eN/CD73
and A2AR on glial cells is observed. Finally, increased glial A1R expression following CTBS supports
anti-inflammatory adenosine actions and potentially contributes to the overall neuroprotective effect
observed in EAE animals after CTBS treatment.

Keywords: CD73; adenosine; A2AR; A1R; neuroinflammation; theta-burst stimulation; rTMS;
purinergic signaling

1. Introduction

Multiple sclerosis (MS) is a progressive demyelinating and neurodegenerative disorder
driven by the adaptive immune response [1,2] and inflicts primary damage to the myelin
sheath [3]. Succeeding inflammation and glial cell activation result in diffuse plaques of
demyelination and axonal loss in multiple areas of the brain and spinal cord, which are the
main cause of progressive neurological disability and motor dysfunctions in MS [4]. The
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histopathological deteriorations create many other symptoms, including pain, depression,
spasticity, and cognitive deficits, which also progress over time [5]. The most common
form of MS is relapse-remitting MS (RRMS), occurring in 85% of patients, characterized by
symptomatic loss-of-function periods (relapses), followed by complete or partial remissions.
Even though a compelling improvement is made regarding the introduction of new disease-
modifying treatments, a significant number of patients will still develop a secondary
progressive form of MS (SPMS) [6]. Accordingly, new therapeutic, neuroprotective, and
myelination supportive approaches able to ameliorate neuroinflammation and neurotoxic
reactive phenotype of astrocytes and microglia are major unmet clinical needs in MS [7].

Neuroinflammation driven by astrocytes and microglia in pathological conditions
including MS—and its most widely used animal model experimental autoimmune en-
cephalomyelitis (EAE)—is closely regulated by purinergic signaling. Specifically, the
neuroinflammatory responses of glial cells begin with an emergence of danger-associated
molecular patterns (DAMP), among which adenosine triphosphate (ATP) plays a particular
role. Under the pathological conditions, damaged or dying neurons release large amounts
of ATP [8,9], which acts at nucleotide-responsive purinoreceptors, P2X or P2Y, to initiate
pro-inflammatory actions of glial cells [8]. The action of extracellular ATP at purinore-
ceptors is ceased by its sequential hydrolysis, mediated by the ectonucleotidase enzyme
chain (CD39/NTPDase1, NTPDase2, and CD73). The last step is the hydrolysis of AMP,
mediated via ecto-5′-nucleotidase (eN/Cluster of differentiation 73 (CD73)), resulting in
the production of adenosine [10,11]. One longitudinal study in MS patients [12] showed
that impaired metabolism of extracellular ATP and drop of adenosine in the cerebrospinal
fluid were associated with significantly faster disability progression in MS patients over
time. Similarly, reduced production of adenosine in blood serum and increased production
in the spinal cord tissue [13] were registered along with a strong upregulation of CD73 by
reactive astrocytes during the symptomatic phase of EAE [14].

Adenosine, generated by the catalytic action of CD73, acts at P1 receptor subtypes, A1,
A2A, A2B, and A3, which are abundantly expressed in the CNS [15]. Adenosine plays a critical
role in the regulation and complex modal changes in glial cells during neuroinflammation [16].
Although it is generally considered that adenosine, unlike ATP, elicits anti-inflammatory
and immunosuppressive effects [17], its effects critically depend on a particular P1 receptor
subtype(s), which mediates the adenosine [18]. Thus, concerning MS/EAE, evidence suggests
that potentiation of A1R and blockade of A2AR-mediated adenosine actions induce strong
neuroprotective actions via the attenuation of glial cells’ reactivity [15,18–22].

One promising but poorly exploited clinical approach in MS is repetitive transcranial
magnetic stimulation (rTMS). rTMS refers to a non-invasive and painless stimulation pro-
tocol designed to modulate excitability and activity in several brain systems, by applying
magnetic pulses delivered in predefined administration patterns [23–25]. Theta-burst stimu-
lation protocol (TBS) is a highly effective version of rTMS, which affords a short stimulation
time, low stimulus intensity, and improved reliability of rTMS [26]. Over the past decade,
several studies have shown that rTMS stimulation induces measurable clinical outcomes in
several neurological disorders, including depression, schizophrenia, stroke, Alzheimer’s
disease, and Parkinson’s disease, and significant improvement of motor and cognitive
functions in healthy subjects [27–32]. So far, studies have demonstrated limited clinical
value of rTMS in MS patients [33,34], particularly regarding motor dysfunction [35,36].

Despite numerous positive neurological outcomes in several neurological disorders,
mechanisms underlying the plasticity induced by TBS are poorly understood, which urges
the need for preclinical animal testing. Up to date, the efficacy of different TBS protocols
has been explored in animal studies using EAE, as an experimental paradigm of RRMS.
The studies have demonstrated reduced oxidative stress [37,38], attenuation of gliosis [39],
and increased expression of brain-derived neurotrophic factor (BDNF) [40]. Therefore,
the present study aims to explore the effect of continuous theta-burst stimulation (CTBS)
protocol on purinergic system activity in the context of neuroinflammation associated
with experimental autoimmune encephalomyelitis in Dark Agouti rats. If proven effective,
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these data could incite translation into clinical practice as an early/add-on non-invasive
therapeutic intervention.

2. Material and Methods
2.1. Ethical Statement

All experimental procedures were approved by Ethics Comity of Military Medical
Academy (Application No. 323-07-00622/2017-05). Care was taken to minimize the pain
and discomfort of the experimental animals in accordance with EU Directive 2010/63/EU.

2.2. Animals

This study was performed on two months old female Dark Agouti (DA) rats (150–
200 g) acquired from Military Medical Academy local colony. All animas were housed
under standardized conditions (constant humidity 55 ± 3%, temperature 23 ± 2 oC, 13/11
h light/dark regime) in polyethylene cages (3 animals per cage) with food and water
ad libitum.

2.3. Induction of Experimental Autoimmune Encephalomyelitis

Acute experimental autoimmune encephalomyelitis was induced as previously de-
scribed [39]. Briefly, animals were anesthetized with sodium pentobarbital (45 mg/kg,
Trittay, Germany) and s.c. injected with 0.1 mL of encephalogenic emulsion comprising
complete Freund’s Adjuvant (CFA, 1 mg/mL Mycobacterium tuberculosis, Sigma, St. Louis,
MO, USA) and rat spinal cord tissue homogenate (50% w/v in saline) in right hind foot.

The animals were weighed and daily scored for neurological signs of EAE for 24 days
post-injection (dpi) using the standard EAE scoring scale (0–5): 0 = unaffected/no sign
of illness; 0.5 = reduced tail tone; 1 = tail atony; 1.5 = slightly clumsy gait, impaired
righting ability or combination; 2 = hind limb paresis; 2.5 = partial hind limb paralysis;
3 = complete hind limb paralysis; 3.5 = complete hind limb paralysis accompanied with
forelimb weakness; 4 = tetraplegic; 5 = morbidus state or death [41]. Daily score was
averaged taking into account all animals within the experimental group.

2.4. Theta-Burst Stimulation Protocol

In the present study, theta-burst stimulation (TBS) was applied in the form of con-
tinuous protocol (CTBS), as previously described [39,40,42]. Briefly, the stimulation was
performed using MagStim Rapid2 device via 25 mm figure-of-eight coil (The MagStim
Company, Whitland, UK). Continuous protocol was applied according to [43]. The CTBS
block was administered as a single 40 s train of bursts repeated at a frequency of 5 Hz, each
block containing 600 pulses. Stimulation intensity was set at 30% of maximal output, just
below a motor threshold value. The stimulation was applied by holding the center of the
coil directly above the frontal cranial bone in close contact with the scalp of a manually
immobilized animal. Given that a coil size is larger than cranium of an animal, application
over the frontal cranial bone provides equally distributed whole brain stimulation.

2.5. Experimental Groups and Treatment

All animals were divided into four experimental groups: naïve, healthy animals (n = 8),
EAE animals (sacrificed on day 24, n = 8), EAE animals subjected to CTBS protocol (n = 8),
and animals subjected to sham CTBS noise artifact (n = 8). Animals were subjected to either
CTBS or noise artifact for 10 consecutive days, starting at 14 dpi, when clinical scoring
showed disease peak (Figure 1). The next day, animals were decapitated using Harvard
Apparatus, and spinal cord tissue was processed for immunohistochemistry. Given that
sham groups did not produce any qualitative/quantitative change when compared to
non-treated animals, those images were not shown.
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Figure 1. CTBS treatments of EAE rats. Rats were immunized for EAE at day 0 and scored and
weighed every day until day 24. The first symptoms appeared around 10 dpi and peaked around
14 dpi. The animals were subjected to CTBS or sham noise artifact for 10 consecutive days from
disease peak and euthanized.

2.6. Enzyme Histochemistry

Ectonucleotidase enzyme histochemistry based on the AMP-hydrolyzing activities
of and eN/CD73 has been applied, as previously described [44]. Briefly, cryosections
were preincubated for 30 min at RT in TRIS-maleate sucrose buffer (TMS), containing
0.25 M sucrose, 50 mM TRIS-maleate, 2 mM MgCl2 (pH 7.4), and 2 mM levamisole, to
inhibit tissue non-specific alkaline phosphatase. The enzyme reaction was carried out at
37 ◦C/90 min, in TMS buffer, containing 2 mM Pb(NO3)2, 5 mM MnCl2, 3% dextran T250,
and 1 mM substrate (ATP, ADP, or AMP), as substrate. After thorough washing, slides
were immersed in 1% (v/v) (NH4)2S, and the product of enzyme reaction was visualized
as an insoluble brown precipitate at a site of the enzyme activity. After dehydration in
graded ethanol solutions (70–100% EtOH and 100% xylol), slides were mounted with
a DPX-mounting medium (Sigma Aldrich, Saint Louise, MO, USA). The sections were
examined under LEITZ DM RB light microscope (Leica Mikroskopie and Systems GmbH,
Wetzlar, Germany), equipped with LEICA DFC320 CCD camera (Leica Microsystems
Ltd., Heerbrugg, Switzerland) and analyzed using LEICA DFC Twain Software (Leica,
Wetzlar, Germany).

2.7. Immunofluorescence and Confocal Microscopy

Lumbar areas of the spinal cords (3–4 animals per group) were removed from decap-
itated animals and fixed in 4% paraformaldehyde (0.1 M PBS, pH 7.4, 12 h at 4 ◦C) and
dehydrated in graded sucrose solution (10–30% in 0.1 M PBS, pH 7.4). After dehydration,
25 µm sections were cut on crytome and collected serially, mounted on supefrost glass
slides, air-dried for 1–2 h at room temperature, and stored at 20 ◦C until staining. After
rehydration and washing steps in PBS, sections were blocked with 5% normal donkey
serum at room temperature for 1 h, followed by incubation with primary antibodies (Table
1). Slides were then probed with appropriate secondary antibodies (Table 1) for 2 h at
room temperature in the dark chamber. Slides were covered using the Mowiol medium
(Sigma Aldrich, USA) and left to dry at 4 ◦C over night. Slides were examined using a
confocal laser-scanning microscope (LSM 510, Carl Zeiss, GmbH, Jena, Germany) using Ar
multi-line (457, 478, 488, and 514 nm), HeNe (543 nm), HeNe (643 nm) lasers using 63×
(×2 digital zoom) DIC oil, 40× and monochrome camera AxioCam ICm1 camera (Carl
Zeiss, GmbH, Germany).

2.8. Quantification of Immunofluorescence and Multi-Image Colocalization Analysis

All image quantification and analysis were performed using ImageJ software (free
download from https://imagej.net/Dowloads, accessed on 10 April 2021). In order to
evaluate a degree of overlap and correlation between multiple channels, we performed
multi-image colocalization analysis using the JACoP ImageJ plugin. A degree of overlap
and correlation between channels was estimated by calculating Pearson’s correlation coeffi-
cient (PCC) and Manders’ correlation coefficient (MCC). We captured 7–9 images/animal
of the white matter under the same conditions (1024 × 1024, laser gain and exposure) and

https://imagej.net/Dowloads
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performed PCC and MCC analysis. Analysis was performed on 40× magnification for
PCC and 63×magnifications for MCC analysis. Given that astrocytes and microglia were
closely related and often intermingled without clear borders, especially in EAE group,
whole images were used for analysis rather than single cell [45]. PCC is a statistical pa-
rameter that reflects co-occurrence and correlation of analyzed channels. On the other
hand, MCC measures fractional overlap between two signals, signal 1 and signal 2. MCC1
quantifies the fraction of signal 1 that co-localizes with signal 2, while MCC2 represents the
fraction of signal 2 that overlaps with signal 1 [45].

Table 1. Antibodies used for immunohistochemistry.

Antibody Source and Type Used
Dilution Manufacturer

Iba-1 Goat, polyclonal 1:400 Abcam ab5076,
RRID:AB_2224402

CD73, rNu-9L(I4,I5) Rabbit, polyclonal 1:300 Ectonucleotidases-ab.com

GFAP Rabbit, polyclonal 1:500 DAKO, Agilent Z0334,
RRID:AB_10013382

IL-10 Goat, polyclonal 1:100 Santa Cruz Biotechnology,
sc-1783, RRID: AB_2125115

NF-kB Rabbit, polyclonal 1:100 Santa Cruz Biotechnology,
sc-109, RRID: AB_632039

IL-1β/IL-1F2 Goat, polyclonal 1:100 R&D Systems, AF-501-NA,
RRID: AB_ 354508

A2AR Rabbit, polyclonal 1:300 Abcam, ab3461, RRID:
AB_303823

A1R Rabbit, polyclonal 1:200
Novus Biologicals,
NB300-549, RRID:

AB_10002337

Anti-mouse IgG
Alexa Fluor 488 Donkey, polyclonal 1:400 Invitrogen A21202,

RRID:AB_141607

Anti-goat IgG Alexa
Fluor 488 Donkey, polyclonal 1:400 Invitrogen A-11055,

RRID:AB_142672

Anti-rabbit IgG Alexa
Fluor 555 Donkey, polyclonal 1:400 Invitrogen A-21428,

RRID:AB_141784

Anti-mouse IgG
Alexa Fluor 647 Donkey, polyclonal 1:400 Thermo Fisher Scientific

A-31571, RRID:AB_162542

2.9. Statistical Analysis

The values are presented either as mean ± SD or SEM, as indicated. Data were first
assessed for normality using Shapiro–Wilk followed by adequate parametric test. One-
way ANOVA followed by Tuckey post hoc test were used in GraphPad Prism v. 6.03.
The p < 0.05 was considered to be significant (Table 2).
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Table 2. Results of ANOVA analysis performed for results obtained from image analysis.

Analysis Performed ANOVA Results p Values

PCC GFAP–CD73 F(2, 28) = 0.7792 p = 0.4736

PCC IBA1–CD73 F(2, 31) = 33.48 p < 0.0001

MCC1 GFAP–CD73 F(2, 28) = 3.228 p = 0.0648

MCC2 CD73-GFAP F(2, 28) = 4.975 p < 0.05

MCC1 IBA1–CD73 F(2, 27) = 5.482 p < 0.05

MCC2 CD73–IBA1 F(2, 27) = 17.05 p < 0.0001

PCC A1R–CD73 F(2, 30) = 22.19 p < 0.0001

PCC IBA1–A1R F(2, 28) = 9.155 p < 0.01

MCC1 GFAP–A1R F(2, 27) = 24.45 p < 0.0001

MCC2 A1R-GFAP F(2, 27) = 9.217 p < 0.01

MCC1 IBA1–A1R F(2, 28) = 9.502 p < 0.01

MCC2 A1R–IBA1 F(2, 28) = 5.458 p < 0.05

PCC GFAP–A2AR F(2, 33) = 12.74 p < 0.001

PCC IBA1–A2AR F(2, 32) = 25.23 p < 0.0001

MCC1 GFAP–A2AR F(2, 26) = 20.86 p < 0.0001

MCC2 A2AR-GFAP F(2, 27) = 8.629 p < 0.01

MCC1 IBA1–A2AR F(2, 29) = 10.93 p < 0.001

MCC2 A2AR–IBA1 F(2, 29) = 31.472 p < 0.0001

3. Results
3.1. The Effect of Continuous Theta-Burst Stimulation on the Disease Course

Injection of the encephalitogenic emulsion in susceptible DA rats resulted in a typical
acute disease, characterized by gradual neurological deterioration and significant weight
loss followed by a spontaneous recovery (Figure 2), as previously reported [39]. Briefly, in
the non-treated group (EAE), the first clinical signs of EAE appeared at ~10 post-injection
(dpi), peaked at 14 dpi, and withdrew at ~24 dpi. In the group subjected to the CTBS
protocol (EAE+CTBS), the stimulation was applied to start from 14 dpi for 10 consecutive
days. The effect of the CTBS noise artifact was explored in the sham group of animals
(EAE+CTBSpl), which were subjected to the noise artifact according to the same experi-
mental scheme. Significant reduction in duration, disability, and weight loss were observed
after CTBS treatment, compared to both sham and naïve animals, as previously published
(Figure 2) [37,39].

3.2. CTBS Promotes Anti-Inflammatory Milieu in EAE

One of the critical pathological features of EAE/MS is the invasion of peripheral
immune cells into the CNS parenchyma and the release of pro-inflammatory mediators,
which initiate the neuroinflammatory response of astrocytes and microglia. Therefore, we
first examined the effect of CTBS on the inflammatory milieu induced by EAE. IL-1β is a
master inflammatory cytokine and the effector molecule in MS/EAE [46]. While control
tissue did not express IL-1β-immunoreactive (ir) signal (Figure 3A,D), conspicuous IL-1β-ir,
mostly residing at GFAP-ir astrocytes and IBA-1-ir microglial cells, were observed in the
gray (Figure 3B) and white matter (Figure 3E) of EAE animals, respectively. Prominent
IL-1β-ir was also observed at neuronal cell bodies in both ventral and dorsal gray matter
(Figure 3B). However, the upregulation of IL-1β was completely prevented in EAE animals
subjected to CTBS, together with the GFAP-ir and Iba-1-ir lowered to the level seen in
healthy control (Figure 3C,F). The downstream signaling cascade of IL-1β initiates nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB) family of transcription
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factors, which trigger the transcription of proinflammatory genes [47]. Strong NF-κB-ir,
mostly residing at GFAP-ir astrocytes cells in EAE animals (Figure 4B, arrowhead), was
attenuated to a control level after CTBS treatment protocol (Figure 4C). The cytokine IL-10,
on the other hand, exhibits immune response downregulatory properties, which include
suppression of the synthesis and release of pro-inflammatory cytokines (PMID: 10320650).
Basal IL-10-ir in control sections (Figure 5A) was attenuated in EAE (Figure 5B), while
CTBS protocol enhanced the intensity of IL-10-ir in comparison to control (Figure 5C). The
IL-10-ir mostly resided at GFAP-ir astrocytes (Figure 5C). Sham-treated animals did not
show any observable changes when compared to EAE (not shown).

Figure 2. Effects of CTBS treatment on the clinical score of EAE and weight of DA rats. Clinical score and weight of EAE
(red circles) in DA rats treated with CTBS protocol (blue square) and CTBS sham noise artifact (black triangles). Animals
were monitored from 0 dpi when EAE was induced until 24 dpi when animals were sacrificed.

3.3. CTBS Attenuates EAE-Induced Expression of CD73

The main objective of the present study was to evaluate the effects of CTBS on puriner-
gic system activity in the context of neuroinflammatory activation of astrocytes and mi-
croglia. Hence, we first examined the level of expression and cellular localization of CD73
in the spinal cord tissue in control, non-treated, and CTBS-treated EAE animals (Figure 6).
The degree of overlap between CD73 and selected fluorescence signals was determined by
calculating PCC and MCC coefficients, which reflect the co-occurrence of selected signals
and the fraction of pixels with positive values for selected signals, respectively. In control
sections, faint CD73-ir was mainly associated with quiescent GFAP-ir cells and only sporad-
ically with IBA-1-ir microglia (Figure 6A,a). A prominent increase in CD73-ir in EAE was
mainly associated with IBA-1-ir (Figure 6B), which is reflected with the increase in both
PCC and MCC2 for the two signals, and only marginally with GFAP-ir (p < 0.05; Figure 6D).
The increase in CD73-ir was completely reversed by the CTBS treatment (Figure 6C,c),
which was reflected with a decrease in MCC2 value primarily for CD73-IBA-1, but also for
CD73-GFAP overlap (p < 0.05, Figure 6E). The occurrence of CD73-ir with both fluorescence
tracers for astrocytes and microglia was confirmed with the Z-stack imaging (Figure 6F).
Interestingly, the fraction of the CD73-ir in control and CTBS sections was found without
association with GFAP- and IBA-1-ir (Figure 6c, arrowheads).
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Figure 3. Effect of CTBS treatment on IL-1β expression in gray and white matter of EAE rats. Triple
immunofluorescence labeling directed to astrocyte marker GFAP (blue), microglial marker IBA-1
(green), and pro-inflammatory cytokine IL-1β (red). Expression of IL-1β was not detected in control
sections (A,D). In EAE sections, increased IL-1β immunostaining in gray (B) and white matter (E),
colocalizing with both GFAP and IBA-1 cells. After CTBS treatment, no IL-1β-ir was observed (C,F).
Scale bar corresponds to 50 µm.
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Figure 4. Effects of CTBS treatment on NF-κB expression in EAE rats. Triple immunofluorescence
labeling directed to astrocyte marker GFAP (blue), microglial marker IBA-1 (green), and NF-κB
(red). Faint colocalization of NF-κB-ir and GFAP was observed in control sections (A). In EAE
sections, a marked increase in NF-κB-ir was observed predominantly colocalizing with GFAP+ cells
(B). CTBS treatment decreased immunostaining of NF-κB, and only scattered NF-κB+/GFAP+ cells
were observed (C). Scale bar corresponds to 50 µm.



Brain Sci. 2021, 11, 736 10 of 19

Figure 5. Effects of CTBS treatment on IL-10 expression in EAE rats. Double immunofluorescence
labeling directed to astrocyte marker GFAP (blue) and anti-inflammatory cytokine IL-10 (red). Control
sections revealed modest colocalization of IL-10 and GFAP (A), which was barely detectable in EAE
animas (B). CTBS treatment led to marked increase in immunostaining of IL-10, which was confined
to quiescent GFAP+ cells (C). Scale bar corresponds to 50 µm.



Brain Sci. 2021, 11, 736 11 of 19

Brain Sci. 2021, 11, x FOR PEER REVIEW 11 of 20 
 

spectively. In control sections, faint CD73-ir was mainly associated with quiescent 
GFAP-ir cells and only sporadically with IBA-1-ir microglia (Figure 6A,a). A prominent 
increase in CD73-ir in EAE was mainly associated with IBA-1-ir (Figure 6B), which is re-
flected with the increase in both PCC and MCC2 for the two signals, and only marginally 
with GFAP-ir (p < 0.05; Figure 6D). The increase in CD73-ir was completely reversed by 
the CTBS treatment (Figure 6C,c), which was reflected with a decrease in MCC2 value 
primarily for CD73-IBA-1, but also for CD73-GFAP overlap (p < 0.05, Figure 6E). The 
occurrence of CD73-ir with both fluorescence tracers for astrocytes and microglia was 
confirmed with the Z-stack imaging (Figure 6F). Interestingly, the fraction of the CD73-ir 
in control and CTBS sections was found without association with GFAP- and IBA-1-ir 
(Figure 6c, arrowheads). 

 
Figure 6. Effects of CTBS treatment on eN/CD73 expression in EAE rats. Triple immunofluorescence labeling directed to 
astrocyte marker GFAP (blue), microglial marker IBA-1 (green), and eN/CD73 (red). In control section, faint staining of 
eN/CD73 was observed colocalizing dominantly with GFAP+ cells (A,a). In EAE sections, a marked increase in eN/CD73 
staining was observed colocalizing with GFAP+ and IBA-1+ cells (B,b). After CTBS treatment, a significant reduction in 
eN/CD73-ir was observed (C,c). Pearson correlation coefficients (PCC) indicating the level of signal overlap between 
GFAP-ir and eN/CD73-ir and IBA-1-ir and eN/CD73-ir. Bars show mean PCC ± SEM, from 7–9 images/animal (D). Man-
der’s colocalization coefficient (MCC) indicating level of signal colocalization between GFAP/CD73 (MCC1, light blue), 
CD73/GFAP (MCC2, dark blue), IBA-1/CD73 (MCC1, light green), and CD73/IBA1 (MCC2, dark green) (E). Orthogonal 
Z-stack projection of GFAP/CD73 and IBA-1/CD73 (F). Level of significance: * p ˂  0.05 or less when compared to control, # 

p ˂ 0.05 when compared to EAE. Scale bar corresponds to 50 µm. 

3.4. CTBS Attenuates EAE-Induced Upregulation of CD73 and Shift in A1R-to-A2AR Expression 
Altered immunofluorescence imaging directed to CD73 pointed to significant alter-

ations of CD73 expression, both in EAE and after CTBS treatment. Therefore, the expres-
sion of the CD73 enzyme activity was shown by AMP-based enzyme histochemistry 
(Figure 7). The diffuse histochemical reaction produced by CD73-catalyzed hydrolysis of 
AMP was dominantly observed in the control spinal cord gray matter (Figure 7A,B), 
whereas the white matter was faintly stained (Figure 7A,C). In EAE sections, an increased 
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Figure 6. Effects of CTBS treatment on eN/CD73 expression in EAE rats. Triple immunofluorescence labeling directed to
astrocyte marker GFAP (blue), microglial marker IBA-1 (green), and eN/CD73 (red). In control section, faint staining of
eN/CD73 was observed colocalizing dominantly with GFAP+ cells (A,a). In EAE sections, a marked increase in eN/CD73
staining was observed colocalizing with GFAP+ and IBA-1+ cells (B,b). After CTBS treatment, a significant reduction in
eN/CD73-ir was observed (C,c). Pearson correlation coefficients (PCC) indicating the level of signal overlap between
GFAP-ir and eN/CD73-ir and IBA-1-ir and eN/CD73-ir. Bars show mean PCC ± SEM, from 7–9 images/animal (D).
Mander’s colocalization coefficient (MCC) indicating level of signal colocalization between GFAP/CD73 (MCC1, light blue),
CD73/GFAP (MCC2, dark blue), IBA-1/CD73 (MCC1, light green), and CD73/IBA1 (MCC2, dark green) (E). Orthogonal
Z-stack projection of GFAP/CD73 and IBA-1/CD73 (F). Level of significance: * p < 0.05 or less when compared to control,
# p < 0.05 when compared to EAE. Scale bar corresponds to 50 µm.

3.4. CTBS Attenuates EAE-Induced Upregulation of CD73 and Shift in A1R-to-A2AR Expression

Altered immunofluorescence imaging directed to CD73 pointed to significant alter-
ations of CD73 expression, both in EAE and after CTBS treatment. Therefore, the expression
of the CD73 enzyme activity was shown by AMP-based enzyme histochemistry (Figure 7).
The diffuse histochemical reaction produced by CD73-catalyzed hydrolysis of AMP was
dominantly observed in the control spinal cord gray matter (Figure 7A,B), whereas the
white matter was faintly stained (Figure 7A,C). In EAE sections, an increased reaction
was observed in both gray (Figure 7D,E) and white matter (Figure 7D,F), with numerous
amoeboid CD73-reactive cells (Figure 7E). Again, CTBS treatment resulted in histochemical
staining almost identical to the control (Figure 7G–I). Diffuse staining dominated the ven-
tral and dorsal gray matter (Figure 7G), whereas no infiltrations of amoeboid cells could be
found in the white matter (Figure 7H,I).

Signaling actions of adenosine in the CNS are mostly mediated via high-affinity
inhibitory A1R and excitatory A2AR receptors, differentially involved in neuroinflammatory
processes [15,18]. In physiological conditions, the expression is dominated by A1R mostly
found in association with the gray and white matter parenchyma (Figure 8A,a). The
induction of EAE is associated with marked loss of A1R-ir, particularly from the white
matter projection pathways (Figure 8B,b). However, CTBS treatment restored and even
enhanced the intensity of A1R-ir (Figure 8C,c). The determination of PCC and MCC had
shown that CTBS increases the proportion of both GFAP-ir astrocytes and IBA-1-ir cells,
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which expressed A1R-ir, whereas the overall fraction of A1R-ir is expressed by the glial
cells (Figure 8D,E; p < 0.05), also confirmed by Z-stack imaging (Figure 8F). Therefore,
EAE is associated with the significant axonal loss of A1R-ir, whereas CTBS restores the
expression and even potentiates it at responsive glial cells.

Figure 7. Effects of CTBS treatment on AMP-based enzyme histochemistry in lumbar spinal cords
of EAE rats. Enzyme histochemistry in the presence of AMP as a substrate labeling structures that
exhibit eN/CD73 activity in the spinal cord of control, EAE, and CTBS-treated EAE sections. Control
sections (A) exhibited diffuse staining patterns localized mainly in gray matter (B), while white
matter was devoid of staining. (C) EAE sections reveled (D) a marked increase in eN/CD73 activity
localized in gray (E) and white matter (F). After CTBS protocol (G), faint activity was observed in
both gray (H) and white matter (I), similarly to control sections. Scale bar corresponds to 50 µm.

Concerning the A2AR, the intensity of ir was weak in control sections, and no signifi-
cant co-localization was observed with either GFAP-ir or IBA-1 (Figure 9A,a). EAE was
associated with significant enhancement of A2AR-ir, particularly co-localized with GFAP-
and IBA1-ir (Figure 9B,b), reflected through a significant increase in PCC for the association
of A2AR with GFAP and IBA-1 (Figure 9D). Again, CTBS treatment markedly decreased
the intensity of A2AR-ir and induced massive dissociation between GFAP- and IBA-1-ir.
A significant part of A2AR-ir after CTBS resided at 5–7 µm in diameter ovoid structures,
probably axon fibers (Figure 9c, arrowhead). Combined immunofluorescence directed to
A2AR and neurofilament H protein showed a strong association of A2AR with neuronal
cell bodies in the gray matter and with axonal fibers in the white matter (Figure 10A,B).
The CTBS treatment reduced A2AR expression on glial cells and increased it on spinal
cord neurons.
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Figure 8. Effects of CTBS treatment on A1R expression in lumbar spinal cords of EAE rats. Triple immunofluorescence
labeling directed to astrocyte marker GFAP (blue), microglial marker IBA-1 (green), and A2AR (red). In control sections,
moderate staining of A1R-ir was observed mostly confined to what appeared to be neuronal elements (A,a). In EAE sections,
no apparent change in A1R-ir was observed compared to control (B,b). After CTBS treatment A1R-ir was significantly
increased on glial cells (C,c). Pearson correlation coefficients (PCC) indicating the level of signal overlap between GFAP-ir
and A1R-ir and IBA-1-ir and A1R-ir. Bars show mean PCC ± SEM, from 7–9 images/animal (D). Mander’s colocalization
coefficient (MCC) indicating level of signal colocalization between GFAP/A1R (MCC1, light blue), A1R/GFAP (MCC2,
dark blue), IBA-1/A1R (MCC1, light green), and A1R/IBA1 (MCC2, dark green). Bars show mean MCC ± SEM, from
7–9 images/animal (E). Orthogonal Z-stack projection of GFAP/A1R and IBA-1/A1R (F). Level of significance: * p < 0.05 or
less when compared to control, # p < 0.05 when compared to EAE. Scale bar corresponds to 50 µm.

Figure 9. Effects of CTBS treatment on A2AR expression in lumbar spinal cords of EAE rats. Triple immunofluorescence
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labeling directed to astrocyte marker GFAP (blue), microglial marker IBA-1 (green), and A2AR (red). In control sections,
faint staining of A2AR-ir was observed (A,a). A prominent increase in A2AR-ir was observed in EAE, both in association
with GFAP- and IBA-1-ir (B,b). The CTBS treatment decreased the overall intensity of A2AR-ir in the gray matter and
was reduced on glial cells, but an increase in staining was detected in non-glial elements (C,c). Pearson correlation
coefficients (PCC) indicating the level of signal overlap between GFAP-ir and A2AR-ir and IBA-1-ir and A2AR-ir. Bars
show mean PCC ± SEM, from 7–9 images/animal (D). Mander’s colocalization coefficient (MCC) indicating level of signal
colocalization between GFAP/A2AR (MCC1, light blue), A2AR/GFAP (MCC2, dark blue), IBA-1/A2AR (MCC1, light green),
and A2AR/IBA1 (MCC2, dark green) Bars show mean MCC ± SEM, from 7–9 images/animal (E). Orthogonal Z-stack
projection of GFAP/A2AR and IBA-1/A2AR (F). Level of significance: * p < 0.05 or less when compared to control, # p < 0.05
when compared to EAE. Scale bar corresponds to 50 µm.

Figure 10. A2AR and CD73 expression in gray and white matter in lumbar spinal cords of CTBS-treated rats. A2AR signal
was colocalized with SMI-32: in gray matter, co-staining was observed in neuronal soma (A), whereas in white matter,
neuronal axons showed A2AR immunoreactivity (B). CD73 signal was colocalized with SMI-32: in gray matter (C), whereas
in white matter, neuronal axons showed SMI-32/CD73 colocalization (D). Scale bar corresponds to 50 µm.

4. Discussion

EAE is a widely used experimental model of the autoimmune neurodegenerative
pathology driven by an intertwined network of adaptive immune and CNS resident cells
and their inflammatory mediators, which reproduce all the critical events in MS. According
to current understanding, pro-inflammatory mediator IL-1β and its main downstream tar-
get, NF-κB, are critically involved in the pathogenesis of MS/EAE [48], while the induction
of anti-inflammatory cytokine IL-10 correlates with the clinical recovery [49]. The involve-
ment of extracellular ATP, adenosine, and their respective P2 and P1 purinoceptors in the
neurodegenerative processes associated with MS/EAE is established as well [50]. Several
recent reports emphasize the contribution of ectonucleotidases and ATP/ADP- [41,51,52]
and adenosine-mediated signaling in the neuroinflammatory process in EAE pathology
(Safarzadeh et al., 2016 [53]; Nedeljkovic, 2019 [18], Lavrnja et al., 2015 [14]; Zhou et al.,
2019 [54]). Accordingly, the present study shows that the neuroinflammatory process in
EAE is associated with prominent upregulation of CD73 in lumbosacral spinal cord tissue,
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mostly by reactive microglia and astrocytes activated in response to immune cell invasion
to the CNS. Given that CD73 is the only adenosine-producing enzyme in the extracellular
milieu [55], the strong induction of CD73 corroborates the finding of the substantial ac-
cumulation of adenosine in the extracellular space during EAE (Lavrnja et al., 2009 [13];
2015 [14]). Although adenosine is generally considered a powerful anti-inflammatory
and immunosuppressive molecule [56,57], it exerts pleiotropic actions depending on the
functional coupling with particular P1 receptor subtype [15,18,20]. Thus, in physiological
conditions, extracellular adenosine, present in low micromolar concentrations, mainly
activates inhibitory a A1R receptor subtype ubiquitously present in the CNS cell types.
However, in neuroinflammatory conditions, the actions of adenosine are mediated largely
via excitatory A2AR and low-affinity A2BR receptor subtypes. Indeed, the upregulation
of A2AR and its tight spatial coupling with CD73 is another common feature of inflamed
tissue in several brain pathologies, including EAE/MS [15,58,59]. Our present study, thus,
corroborates the view that the gain-of-function in CD73/A2AR and enhanced adenosine
signaling drives neuroinflammation and directs the course of EAE.

By using the pathological context of EAE, the principal goal of our study was to show
the ability and efficiency of the CTBS protocol to revert the EAE-induced alterations in
adenosine signaling and, thus, to point to potential merit of TBS as a therapeutic approach
in MS/EAE. Beneficial and anti-inflammatory actions of TBS have been demonstrated
in several neurological and psychiatric disorders and animal models, so far [60–65]. In
the current study, we have observed that animals subjected to CTBS experienced milder
neurological dysfunctions for a shorter time than in the group of non-treated EAE. At
the histopathological level, the CTBS protocol prevented the release of IL-1β and reduced
NF-κB signaling, while increasing the expression of anti-inflammatory IL-10. These effects
altogether suggested that CTBS exerted neuroimmune downregulating properties. Indeed,
animals subjected to CTBS exhibited significantly lower numbers of reactive microglial cells
and hypertrophied astrocytes, which are the typical histological hallmark of the spinal cord
tissue injury in EAE [14,39]. The treatment also decreased both the levels of CD73 enzyme
activity and the protein expression, particularly by microglia and astrocytes, suggesting
a decrease in the extracellular level of adenosine. Given that CD73 itself is necessary for
the peripheral T cells entry and the induction of EAE [66,67], altered expression of CD7
by microglia and astrocytes may be seen as the critical factor of the reduced peripheral
immune cell entry and local neuroinflammation [18,66].

Besides CD73, the CTBS treatment completely reverted the expression of adenosine
receptors, at least the dominant A1R and A2AR subtypes. Specifically, CTBS prevented the
exclusion of A1R-mediated signaling observed in EAE and even enhanced the purinocep-
tors expression in respect to naïve animals. The enhanced expression was mainly observed
at astrocytes and microglia, at which the A1R receptor activation decreases proinflam-
matory cytokines and chemokines, thus reducing astrocyte ability to interact with au-
toreactive CD4+ lymphocytes (Liu et al., 2018 [68]; Cunha, 2005 [58]; Liu et al., 2018 [68];
Bijelić et al., 2020 [52]). Furthermore, the CTBS treatment prevented excessive A2AR signal-
ing and decreased the co-occurrence of both the A2AR and CD73 with the glial cells markers.
Instead, CTBS induced neuronal expression of A2AR, which is known to regulate the tonic
expression and synaptic actions of BDNF [40], thus promoting neuronal survival [69–71].
Namely, neuronal A2AR-mediated signaling increases BDNF synthesis and the resulting
synaptic efficiency and LTD-induced plasticity [72,73], which may be one of the possible
mechanisms of the CTBS-induced protective actions in EAE.

In the end, we would like to point out some limitations of our study. Due to size of
the TBS stimulation coil, when applied, the whole brain of DA rats is being stimulated, and
therefore, we could not ascribe observed beneficial effects to a specific brain region. The
beneficial effects observed in this study are most likely mediated via various descending
cerebro-spinal tracts. It is possible that focal stimulation of a specific region would yield
even better effects; therefore, further research is required in this direction. Another potential
limitation would be the selected time of stimulation, since we chose to stimulate animals
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in the peak of disease and monitor them until the end of disease. Even though it is more
common practice to start treatment in the onset of acute EAE, we wanted to examine
beneficial effects that could translate to more real situation, since MS patients seek medical
attention usually during the peak of their symptoms, which corresponds to the peak of
acute EAE in experimental animals.

5. Conclusions

Our study convincingly demonstrates that the applied CTBS protocol efficiently coun-
teracts the EAE-induced effects on adenosine signaling and attenuates the reactive state of
microglia and astrocytes at histological and biochemical levels, thus providing powerful
protective and reparative potential in EAE. Given the paucity of effective treatments in MS,
the TBS protocols could be a safe and effective complementary therapeutic approach, to-
gether with other disease-modifying treatments, that could provide better clinical outcome
in MS.
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