All Publications

Link to this page

Basaltic Glass-Ceramic Composites: Exploring Structural, Morphological, and Thermal Insights for Ballistic Protection and Radiation Shielding Applications

Luković, Aleksa; Diana Carolina Lago; Jozef Kraxner; Galusek, Dušan; MMatović, Branko; Srećković-Batoćanin, Danica; Maletaškić, Jelena

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Luković, Aleksa
AU  - Diana Carolina Lago
AU  - Jozef Kraxner
AU  - Galusek, Dušan
AU  - MMatović, Branko
AU  - Srećković-Batoćanin, Danica
AU  - Maletaškić, Jelena
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13169
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Basaltic Glass-Ceramic Composites: Exploring Structural, Morphological, and Thermal Insights for Ballistic Protection and Radiation Shielding Applications
SP  - 75
EP  - 75
ER  - 
@conference{
author = "Luković, Aleksa and Diana Carolina Lago and Jozef Kraxner and Galusek, Dušan and MMatović, Branko and Srećković-Batoćanin, Danica and Maletaškić, Jelena",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Basaltic Glass-Ceramic Composites: Exploring Structural, Morphological, and Thermal Insights for Ballistic Protection and Radiation Shielding Applications",
pages = "75-75"
}
Luković, A., Diana Carolina Lago, Jozef Kraxner, Galusek, D., MMatović, B., Srećković-Batoćanin, D.,& Maletaškić, J.. (2024). Basaltic Glass-Ceramic Composites: Exploring Structural, Morphological, and Thermal Insights for Ballistic Protection and Radiation Shielding Applications. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 75-75.
Luković A, Diana Carolina Lago, Jozef Kraxner, Galusek D, MMatović B, Srećković-Batoćanin D, Maletaškić J. Basaltic Glass-Ceramic Composites: Exploring Structural, Morphological, and Thermal Insights for Ballistic Protection and Radiation Shielding Applications. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:75-75..
Luković, Aleksa, Diana Carolina Lago, Jozef Kraxner, Galusek, Dušan, MMatović, Branko, Srećković-Batoćanin, Danica, Maletaškić, Jelena, "Basaltic Glass-Ceramic Composites: Exploring Structural, Morphological, and Thermal Insights for Ballistic Protection and Radiation Shielding Applications" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):75-75.

Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties

Zagorac, Jelena; Schön, Johann Christian; Matović, Branko; Butulija, Svetlana; Zagorac, Dejan

(2024)

TY  - JOUR
AU  - Zagorac, Jelena
AU  - Schön, Johann Christian
AU  - Matović, Branko
AU  - Butulija, Svetlana
AU  - Zagorac, Dejan
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13134
AB  - Hafnium carbide (HfC) is a refractory compound known for its exceptional mechanical, thermal, and electrical properties. This compound has gained significant attention in materials science and engineering due to its high melting point, extreme hardness, and excellent thermal stability. This study presents crystal structure prediction via energy landscape explorations of pristine hafnium carbide supplemented by data mining. Apart from the well-known equilibrium rock salt phase, we predict eight new polymorphs of HfC. The predicted HfC phases appear in the energy landscape with known structure types such as the WC type, NiAs type, 5-5 type, sphalerite (ZnS) type, TlI type, and CsCl type; in addition, we predict two new structure types denoted as ortho_HfC and HfC_polytype, respectively. Moreover, we have investigated the structural characteristics and mechanical properties of hafnium carbide at the DFT level of computation, which opens diverse applications in various technological domains.
T2  - Crystals
T1  - Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties
VL  - 14
IS  - 4
SP  - 340
DO  - 10.3390/cryst14040340
ER  - 
@article{
author = "Zagorac, Jelena and Schön, Johann Christian and Matović, Branko and Butulija, Svetlana and Zagorac, Dejan",
year = "2024",
abstract = "Hafnium carbide (HfC) is a refractory compound known for its exceptional mechanical, thermal, and electrical properties. This compound has gained significant attention in materials science and engineering due to its high melting point, extreme hardness, and excellent thermal stability. This study presents crystal structure prediction via energy landscape explorations of pristine hafnium carbide supplemented by data mining. Apart from the well-known equilibrium rock salt phase, we predict eight new polymorphs of HfC. The predicted HfC phases appear in the energy landscape with known structure types such as the WC type, NiAs type, 5-5 type, sphalerite (ZnS) type, TlI type, and CsCl type; in addition, we predict two new structure types denoted as ortho_HfC and HfC_polytype, respectively. Moreover, we have investigated the structural characteristics and mechanical properties of hafnium carbide at the DFT level of computation, which opens diverse applications in various technological domains.",
journal = "Crystals",
title = "Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties",
volume = "14",
number = "4",
pages = "340",
doi = "10.3390/cryst14040340"
}
Zagorac, J., Schön, J. C., Matović, B., Butulija, S.,& Zagorac, D.. (2024). Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties. in Crystals, 14(4), 340.
https://doi.org/10.3390/cryst14040340
Zagorac J, Schön JC, Matović B, Butulija S, Zagorac D. Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties. in Crystals. 2024;14(4):340.
doi:10.3390/cryst14040340 .
Zagorac, Jelena, Schön, Johann Christian, Matović, Branko, Butulija, Svetlana, Zagorac, Dejan, "Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties" in Crystals, 14, no. 4 (2024):340,
https://doi.org/10.3390/cryst14040340 . .

The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets

Kostoglou, Nikolaos; Stock, Sebastian; Solomi, Angelos; Holzapfel, Damian M.; Hinder, Steven; Baker, Mark; Constantinides, Georgios; Ryzhkov, Vladislav; Maletaškić, Jelena; Matović, Branko; Schneider, Jochen M.; Rebholz, Claus; Mitterer, Christian

(2024)

TY  - JOUR
AU  - Kostoglou, Nikolaos
AU  - Stock, Sebastian
AU  - Solomi, Angelos
AU  - Holzapfel, Damian M.
AU  - Hinder, Steven
AU  - Baker, Mark
AU  - Constantinides, Georgios
AU  - Ryzhkov, Vladislav
AU  - Maletaškić, Jelena
AU  - Matović, Branko
AU  - Schneider, Jochen M.
AU  - Rebholz, Claus
AU  - Mitterer, Christian
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13135
AB  - This study considers the influence of purity and surface area on the thermal and oxidation properties of hexagonal boron nitride (h-BN) nanoplatelets, which represent crucial factors in hightemperature oxidizing environments. Three h-BN nanoplatelet-based materials, synthesized with different purity levels and surface areas (~3, ~56, and ~140 m2/g), were compared, including a commercial BN reference. All materials were systematically analyzed by various characterization techniques, including gas pycnometry, scanning electron microscopy, X-ray diffraction, Fouriertransform infrared radiation, X-ray photoelectron spectroscopy, gas sorption analysis, and thermal gravimetric analysis coupled with differential scanning calorimetry. Results indicated that the thermal stability and oxidation resistance of the synthesized materials were improved by up to ~13.5% (or by 120 ◦C) with an increase in purity. Furthermore, the reference material with its high purity and low surface area (~4 m2/g) showed superior performance, which was attributed to the minimized reactive sites for oxygen diffusion due to lower surface area availability and fewer possible defects, highlighting the critical roles of both sample purity and accessible surface area in h-BN thermooxidative stability. These findings highlight the importance of focusing on purity and surface area control in developing BN-based nanomaterials, offering a path to enhance their performance in extreme thermal and oxidative conditions.
T2  - Nanomaterials
T1  - The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets
VL  - 14
IS  - 7
SP  - 601
DO  - 10.3390/nano14070601
ER  - 
@article{
author = "Kostoglou, Nikolaos and Stock, Sebastian and Solomi, Angelos and Holzapfel, Damian M. and Hinder, Steven and Baker, Mark and Constantinides, Georgios and Ryzhkov, Vladislav and Maletaškić, Jelena and Matović, Branko and Schneider, Jochen M. and Rebholz, Claus and Mitterer, Christian",
year = "2024",
abstract = "This study considers the influence of purity and surface area on the thermal and oxidation properties of hexagonal boron nitride (h-BN) nanoplatelets, which represent crucial factors in hightemperature oxidizing environments. Three h-BN nanoplatelet-based materials, synthesized with different purity levels and surface areas (~3, ~56, and ~140 m2/g), were compared, including a commercial BN reference. All materials were systematically analyzed by various characterization techniques, including gas pycnometry, scanning electron microscopy, X-ray diffraction, Fouriertransform infrared radiation, X-ray photoelectron spectroscopy, gas sorption analysis, and thermal gravimetric analysis coupled with differential scanning calorimetry. Results indicated that the thermal stability and oxidation resistance of the synthesized materials were improved by up to ~13.5% (or by 120 ◦C) with an increase in purity. Furthermore, the reference material with its high purity and low surface area (~4 m2/g) showed superior performance, which was attributed to the minimized reactive sites for oxygen diffusion due to lower surface area availability and fewer possible defects, highlighting the critical roles of both sample purity and accessible surface area in h-BN thermooxidative stability. These findings highlight the importance of focusing on purity and surface area control in developing BN-based nanomaterials, offering a path to enhance their performance in extreme thermal and oxidative conditions.",
journal = "Nanomaterials",
title = "The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets",
volume = "14",
number = "7",
pages = "601",
doi = "10.3390/nano14070601"
}
Kostoglou, N., Stock, S., Solomi, A., Holzapfel, D. M., Hinder, S., Baker, M., Constantinides, G., Ryzhkov, V., Maletaškić, J., Matović, B., Schneider, J. M., Rebholz, C.,& Mitterer, C.. (2024). The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets. in Nanomaterials, 14(7), 601.
https://doi.org/10.3390/nano14070601
Kostoglou N, Stock S, Solomi A, Holzapfel DM, Hinder S, Baker M, Constantinides G, Ryzhkov V, Maletaškić J, Matović B, Schneider JM, Rebholz C, Mitterer C. The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets. in Nanomaterials. 2024;14(7):601.
doi:10.3390/nano14070601 .
Kostoglou, Nikolaos, Stock, Sebastian, Solomi, Angelos, Holzapfel, Damian M., Hinder, Steven, Baker, Mark, Constantinides, Georgios, Ryzhkov, Vladislav, Maletaškić, Jelena, Matović, Branko, Schneider, Jochen M., Rebholz, Claus, Mitterer, Christian, "The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets" in Nanomaterials, 14, no. 7 (2024):601,
https://doi.org/10.3390/nano14070601 . .

Program and Book of Abstracts of the 2nd International Conference on Innovative Materials in Extreme Conditions (IMEC2024)

Matović, Branko; Cvijović-Alagić, Ivana; Maksimović, Vesna; Zagorac, Dejan

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13138
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
T1  - Program and Book of Abstracts of the 2nd International Conference on Innovative Materials in Extreme Conditions (IMEC2024)
SP  - 82
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13138
ER  - 
@conference{
editor = "Matović, Branko, Cvijović-Alagić, Ivana, Maksimović, Vesna, Zagorac, Dejan",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
title = "Program and Book of Abstracts of the 2nd International Conference on Innovative Materials in Extreme Conditions (IMEC2024)",
pages = "82",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13138"
}
Matović, B., Cvijović-Alagić, I., Maksimović, V.,& Zagorac, D.. (2024). Program and Book of Abstracts of the 2nd International Conference on Innovative Materials in Extreme Conditions (IMEC2024). 
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 82.
https://hdl.handle.net/21.15107/rcub_vinar_13138
Matović B, Cvijović-Alagić I, Maksimović V, Zagorac D. Program and Book of Abstracts of the 2nd International Conference on Innovative Materials in Extreme Conditions (IMEC2024). 2024;:82.
https://hdl.handle.net/21.15107/rcub_vinar_13138 .
Matović, Branko, Cvijović-Alagić, Ivana, Maksimović, Vesna, Zagorac, Dejan, "Program and Book of Abstracts of the 2nd International Conference on Innovative Materials in Extreme Conditions (IMEC2024)" (2024):82,
https://hdl.handle.net/21.15107/rcub_vinar_13138 .

The high-temperature applicability of the Ti,Nb-Al-C MAX phases-based bulk materials and vacuum-arc deposited films

Prikhna, T.A.; Serbenyuk, T.B.; Ostash, O.P.; Sverdun, V.B.; Kuprin, А.S.; Matović, Branko; Cvijović-Alagić, Ivana; Podhurska, V.Ya.

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Prikhna, T.A.
AU  - Serbenyuk, T.B.
AU  - Ostash, O.P.
AU  - Sverdun, V.B.
AU  - Kuprin, А.S.
AU  - Matović, Branko
AU  - Cvijović-Alagić, Ivana
AU  - Podhurska, V.Ya.
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13140
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - The high-temperature applicability of the Ti,Nb-Al-C MAX phases-based bulk materials and vacuum-arc deposited films
SP  - 26
EP  - 26
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13140
ER  - 
@conference{
author = "Prikhna, T.A. and Serbenyuk, T.B. and Ostash, O.P. and Sverdun, V.B. and Kuprin, А.S. and Matović, Branko and Cvijović-Alagić, Ivana and Podhurska, V.Ya.",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "The high-temperature applicability of the Ti,Nb-Al-C MAX phases-based bulk materials and vacuum-arc deposited films",
pages = "26-26",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13140"
}
Prikhna, T.A., Serbenyuk, T.B., Ostash, O.P., Sverdun, V.B., Kuprin, А.S., Matović, B., Cvijović-Alagić, I.,& Podhurska, V.Ya.. (2024). The high-temperature applicability of the Ti,Nb-Al-C MAX phases-based bulk materials and vacuum-arc deposited films. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 26-26.
https://hdl.handle.net/21.15107/rcub_vinar_13140
Prikhna T, Serbenyuk T, Ostash O, Sverdun V, Kuprin А, Matović B, Cvijović-Alagić I, Podhurska V. The high-temperature applicability of the Ti,Nb-Al-C MAX phases-based bulk materials and vacuum-arc deposited films. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:26-26.
https://hdl.handle.net/21.15107/rcub_vinar_13140 .
Prikhna, T.A., Serbenyuk, T.B., Ostash, O.P., Sverdun, V.B., Kuprin, А.S., Matović, Branko, Cvijović-Alagić, Ivana, Podhurska, V.Ya., "The high-temperature applicability of the Ti,Nb-Al-C MAX phases-based bulk materials and vacuum-arc deposited films" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):26-26,
https://hdl.handle.net/21.15107/rcub_vinar_13140 .

Ablation performance of rare-earth modified ZrB2–SiC composites under oxyacetylene torch test

Ünsal, Hakan; Kovalčíková, Alexandra; Hičák, Michal; Chlup, Zdnek; Dlouhý, Ivo; Matović, Branko; Tatarko, Peter

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Ünsal, Hakan
AU  - Kovalčíková, Alexandra
AU  - Hičák, Michal
AU  - Chlup, Zdnek
AU  - Dlouhý, Ivo
AU  - Matović, Branko
AU  - Tatarko, Peter
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13143
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Ablation performance of rare-earth modified ZrB2–SiC composites under oxyacetylene torch test
SP  - 36
EP  - 36
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13143
ER  - 
@conference{
author = "Ünsal, Hakan and Kovalčíková, Alexandra and Hičák, Michal and Chlup, Zdnek and Dlouhý, Ivo and Matović, Branko and Tatarko, Peter",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Ablation performance of rare-earth modified ZrB2–SiC composites under oxyacetylene torch test",
pages = "36-36",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13143"
}
Ünsal, H., Kovalčíková, A., Hičák, M., Chlup, Z., Dlouhý, I., Matović, B.,& Tatarko, P.. (2024). Ablation performance of rare-earth modified ZrB2–SiC composites under oxyacetylene torch test. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 36-36.
https://hdl.handle.net/21.15107/rcub_vinar_13143
Ünsal H, Kovalčíková A, Hičák M, Chlup Z, Dlouhý I, Matović B, Tatarko P. Ablation performance of rare-earth modified ZrB2–SiC composites under oxyacetylene torch test. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:36-36.
https://hdl.handle.net/21.15107/rcub_vinar_13143 .
Ünsal, Hakan, Kovalčíková, Alexandra, Hičák, Michal, Chlup, Zdnek, Dlouhý, Ivo, Matović, Branko, Tatarko, Peter, "Ablation performance of rare-earth modified ZrB2–SiC composites under oxyacetylene torch test" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):36-36,
https://hdl.handle.net/21.15107/rcub_vinar_13143 .

DFT study of new hybrid organic-inorganic perovskites: guanidinium-BX3 substituted by B=(Sr2+, Ca2+, Mg2+, Be2+) and X=(Cl-, F-)

Jovanović, Dušica; Zagorac, Dejan; Schön, Christian J.; Matović, Branko; Zarubica, Aleksandra; Zagorac, Jelena

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Jovanović, Dušica
AU  - Zagorac, Dejan
AU  - Schön, Christian J.
AU  - Matović, Branko
AU  - Zarubica, Aleksandra
AU  - Zagorac, Jelena
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13148
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - DFT study of new hybrid organic-inorganic perovskites: guanidinium-BX3 substituted by B=(Sr2+, Ca2+, Mg2+, Be2+) and X=(Cl-, F-)
SP  - 48
EP  - 48
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13148
ER  - 
@conference{
author = "Jovanović, Dušica and Zagorac, Dejan and Schön, Christian J. and Matović, Branko and Zarubica, Aleksandra and Zagorac, Jelena",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "DFT study of new hybrid organic-inorganic perovskites: guanidinium-BX3 substituted by B=(Sr2+, Ca2+, Mg2+, Be2+) and X=(Cl-, F-)",
pages = "48-48",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13148"
}
Jovanović, D., Zagorac, D., Schön, C. J., Matović, B., Zarubica, A.,& Zagorac, J.. (2024). DFT study of new hybrid organic-inorganic perovskites: guanidinium-BX3 substituted by B=(Sr2+, Ca2+, Mg2+, Be2+) and X=(Cl-, F-). in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 48-48.
https://hdl.handle.net/21.15107/rcub_vinar_13148
Jovanović D, Zagorac D, Schön CJ, Matović B, Zarubica A, Zagorac J. DFT study of new hybrid organic-inorganic perovskites: guanidinium-BX3 substituted by B=(Sr2+, Ca2+, Mg2+, Be2+) and X=(Cl-, F-). in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:48-48.
https://hdl.handle.net/21.15107/rcub_vinar_13148 .
Jovanović, Dušica, Zagorac, Dejan, Schön, Christian J., Matović, Branko, Zarubica, Aleksandra, Zagorac, Jelena, "DFT study of new hybrid organic-inorganic perovskites: guanidinium-BX3 substituted by B=(Sr2+, Ca2+, Mg2+, Be2+) and X=(Cl-, F-)" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):48-48,
https://hdl.handle.net/21.15107/rcub_vinar_13148 .

Boron nitride nanotubes versus carbon nanotubes: A thermal stability and oxidation behavior study

Kostoglou, Nikolaos; Tampaxis, Christos; Charalambopoulou, Georgia; Constantinides, Georgios; Ryzhkov, Vladislav; Doumanidis, Charalabos; Matović, Branko; Mitterer, Christian; Rebholz, Claus

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Kostoglou, Nikolaos
AU  - Tampaxis, Christos
AU  - Charalambopoulou, Georgia
AU  - Constantinides, Georgios
AU  - Ryzhkov, Vladislav
AU  - Doumanidis, Charalabos
AU  - Matović, Branko
AU  - Mitterer, Christian
AU  - Rebholz, Claus
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13151
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Boron nitride nanotubes versus carbon nanotubes: A thermal stability and oxidation behavior study
SP  - 52
EP  - 52
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13151
ER  - 
@conference{
author = "Kostoglou, Nikolaos and Tampaxis, Christos and Charalambopoulou, Georgia and Constantinides, Georgios and Ryzhkov, Vladislav and Doumanidis, Charalabos and Matović, Branko and Mitterer, Christian and Rebholz, Claus",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Boron nitride nanotubes versus carbon nanotubes: A thermal stability and oxidation behavior study",
pages = "52-52",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13151"
}
Kostoglou, N., Tampaxis, C., Charalambopoulou, G., Constantinides, G., Ryzhkov, V., Doumanidis, C., Matović, B., Mitterer, C.,& Rebholz, C.. (2024). Boron nitride nanotubes versus carbon nanotubes: A thermal stability and oxidation behavior study. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 52-52.
https://hdl.handle.net/21.15107/rcub_vinar_13151
Kostoglou N, Tampaxis C, Charalambopoulou G, Constantinides G, Ryzhkov V, Doumanidis C, Matović B, Mitterer C, Rebholz C. Boron nitride nanotubes versus carbon nanotubes: A thermal stability and oxidation behavior study. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:52-52.
https://hdl.handle.net/21.15107/rcub_vinar_13151 .
Kostoglou, Nikolaos, Tampaxis, Christos, Charalambopoulou, Georgia, Constantinides, Georgios, Ryzhkov, Vladislav, Doumanidis, Charalabos, Matović, Branko, Mitterer, Christian, Rebholz, Claus, "Boron nitride nanotubes versus carbon nanotubes: A thermal stability and oxidation behavior study" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):52-52,
https://hdl.handle.net/21.15107/rcub_vinar_13151 .

Purity and surface area: Key factors on thermal stability and oxidation resistance of BN nanoplatelets

Kostoglou, Nikolaos; Stock, Sebastian; Solom, Angelos; Holzapfel, Damian; Hinder, Steven; Baker, Mark; Constantinides, Georgios; Ryzhkov, Vladislav; Maletaškić, Jelena; Matović, Branko; Schneider, Jochen; Rebholz, Claus; Mitterer, Christian

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Kostoglou, Nikolaos
AU  - Stock, Sebastian
AU  - Solom, Angelos
AU  - Holzapfel, Damian
AU  - Hinder, Steven
AU  - Baker, Mark
AU  - Constantinides, Georgios
AU  - Ryzhkov, Vladislav
AU  - Maletaškić, Jelena
AU  - Matović, Branko
AU  - Schneider, Jochen
AU  - Rebholz, Claus
AU  - Mitterer, Christian
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13152
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Purity and surface area: Key factors on thermal stability and oxidation resistance of BN nanoplatelets
SP  - 53
EP  - 53
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13152
ER  - 
@conference{
author = "Kostoglou, Nikolaos and Stock, Sebastian and Solom, Angelos and Holzapfel, Damian and Hinder, Steven and Baker, Mark and Constantinides, Georgios and Ryzhkov, Vladislav and Maletaškić, Jelena and Matović, Branko and Schneider, Jochen and Rebholz, Claus and Mitterer, Christian",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Purity and surface area: Key factors on thermal stability and oxidation resistance of BN nanoplatelets",
pages = "53-53",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13152"
}
Kostoglou, N., Stock, S., Solom, A., Holzapfel, D., Hinder, S., Baker, M., Constantinides, G., Ryzhkov, V., Maletaškić, J., Matović, B., Schneider, J., Rebholz, C.,& Mitterer, C.. (2024). Purity and surface area: Key factors on thermal stability and oxidation resistance of BN nanoplatelets. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 53-53.
https://hdl.handle.net/21.15107/rcub_vinar_13152
Kostoglou N, Stock S, Solom A, Holzapfel D, Hinder S, Baker M, Constantinides G, Ryzhkov V, Maletaškić J, Matović B, Schneider J, Rebholz C, Mitterer C. Purity and surface area: Key factors on thermal stability and oxidation resistance of BN nanoplatelets. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:53-53.
https://hdl.handle.net/21.15107/rcub_vinar_13152 .
Kostoglou, Nikolaos, Stock, Sebastian, Solom, Angelos, Holzapfel, Damian, Hinder, Steven, Baker, Mark, Constantinides, Georgios, Ryzhkov, Vladislav, Maletaškić, Jelena, Matović, Branko, Schneider, Jochen, Rebholz, Claus, Mitterer, Christian, "Purity and surface area: Key factors on thermal stability and oxidation resistance of BN nanoplatelets" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):53-53,
https://hdl.handle.net/21.15107/rcub_vinar_13152 .

Structure, mechanical characteristics and high-temperature stability of sintered under high and by hot pressing ZrB2- and HfB2–based composites

Prikhna, Tetiana; Barvitskyi, Pavlo; Matović, Branko; Zagorac, Dejan; Lokatkina, Anastasiya; Büchner, Bernd; Werner, Jochen; Karpets, Myroslav; Kluge, Robert; Moshchil, Viktor; Bondar, Anatolii; Borymskyi, Olexander; Devin, Leonid; Ponomarov, Semyon

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Prikhna, Tetiana
AU  - Barvitskyi, Pavlo
AU  - Matović, Branko
AU  - Zagorac, Dejan
AU  - Lokatkina, Anastasiya
AU  - Büchner, Bernd
AU  - Werner, Jochen
AU  - Karpets, Myroslav
AU  - Kluge, Robert
AU  - Moshchil, Viktor
AU  - Bondar, Anatolii
AU  - Borymskyi, Olexander
AU  - Devin, Leonid
AU  - Ponomarov, Semyon
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13153
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Structure, mechanical characteristics and high-temperature stability of sintered under high and by hot pressing ZrB2- and HfB2–based composites
SP  - 55
EP  - 55
ER  - 
@conference{
author = "Prikhna, Tetiana and Barvitskyi, Pavlo and Matović, Branko and Zagorac, Dejan and Lokatkina, Anastasiya and Büchner, Bernd and Werner, Jochen and Karpets, Myroslav and Kluge, Robert and Moshchil, Viktor and Bondar, Anatolii and Borymskyi, Olexander and Devin, Leonid and Ponomarov, Semyon",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Structure, mechanical characteristics and high-temperature stability of sintered under high and by hot pressing ZrB2- and HfB2–based composites",
pages = "55-55"
}
Prikhna, T., Barvitskyi, P., Matović, B., Zagorac, D., Lokatkina, A., Büchner, B., Werner, J., Karpets, M., Kluge, R., Moshchil, V., Bondar, A., Borymskyi, O., Devin, L.,& Ponomarov, S.. (2024). Structure, mechanical characteristics and high-temperature stability of sintered under high and by hot pressing ZrB2- and HfB2–based composites. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 55-55.
Prikhna T, Barvitskyi P, Matović B, Zagorac D, Lokatkina A, Büchner B, Werner J, Karpets M, Kluge R, Moshchil V, Bondar A, Borymskyi O, Devin L, Ponomarov S. Structure, mechanical characteristics and high-temperature stability of sintered under high and by hot pressing ZrB2- and HfB2–based composites. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:55-55..
Prikhna, Tetiana, Barvitskyi, Pavlo, Matović, Branko, Zagorac, Dejan, Lokatkina, Anastasiya, Büchner, Bernd, Werner, Jochen, Karpets, Myroslav, Kluge, Robert, Moshchil, Viktor, Bondar, Anatolii, Borymskyi, Olexander, Devin, Leonid, Ponomarov, Semyon, "Structure, mechanical characteristics and high-temperature stability of sintered under high and by hot pressing ZrB2- and HfB2–based composites" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):55-55.

Characterization of high pressure oxygenated EuBCO and GdBCO coated conductors

Prikhna, Tetiana; Kethamkuzhi, Aiswarya; Vlad, Roxana; Matović, Branko; Ponomarov, Semyon; Kluge, Robert; Karpets, Myroslav; Moshchil, Viktor E.; Obradors, Xavier; Gutierrez, Joffre; Büchner, Bernd; Puig, Teresa

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Prikhna, Tetiana
AU  - Kethamkuzhi, Aiswarya
AU  - Vlad, Roxana
AU  - Matović, Branko
AU  - Ponomarov, Semyon
AU  - Kluge, Robert
AU  - Karpets, Myroslav
AU  - Moshchil, Viktor E.
AU  - Obradors, Xavier
AU  - Gutierrez, Joffre
AU  - Büchner, Bernd
AU  - Puig, Teresa
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13158
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Characterization of high pressure oxygenated EuBCO and GdBCO coated conductors
SP  - 62
EP  - 62
ER  - 
@conference{
author = "Prikhna, Tetiana and Kethamkuzhi, Aiswarya and Vlad, Roxana and Matović, Branko and Ponomarov, Semyon and Kluge, Robert and Karpets, Myroslav and Moshchil, Viktor E. and Obradors, Xavier and Gutierrez, Joffre and Büchner, Bernd and Puig, Teresa",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Characterization of high pressure oxygenated EuBCO and GdBCO coated conductors",
pages = "62-62"
}
Prikhna, T., Kethamkuzhi, A., Vlad, R., Matović, B., Ponomarov, S., Kluge, R., Karpets, M., Moshchil, V. E., Obradors, X., Gutierrez, J., Büchner, B.,& Puig, T.. (2024). Characterization of high pressure oxygenated EuBCO and GdBCO coated conductors. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 62-62.
Prikhna T, Kethamkuzhi A, Vlad R, Matović B, Ponomarov S, Kluge R, Karpets M, Moshchil VE, Obradors X, Gutierrez J, Büchner B, Puig T. Characterization of high pressure oxygenated EuBCO and GdBCO coated conductors. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:62-62..
Prikhna, Tetiana, Kethamkuzhi, Aiswarya, Vlad, Roxana, Matović, Branko, Ponomarov, Semyon, Kluge, Robert, Karpets, Myroslav, Moshchil, Viktor E., Obradors, Xavier, Gutierrez, Joffre, Büchner, Bernd, Puig, Teresa, "Characterization of high pressure oxygenated EuBCO and GdBCO coated conductors" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):62-62.

Activating agricultural residues: Corn cob as a resource for adsorption-based pollution management

Mihailović, Ružica; Zarubica, Aleksandra; Matović, Branko; Butulija, Svetlana

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Mihailović, Ružica
AU  - Zarubica, Aleksandra
AU  - Matović, Branko
AU  - Butulija, Svetlana
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13163
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Activating agricultural residues: Corn cob as a resource for adsorption-based pollution management
SP  - 67
EP  - 67
ER  - 
@conference{
author = "Mihailović, Ružica and Zarubica, Aleksandra and Matović, Branko and Butulija, Svetlana",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Activating agricultural residues: Corn cob as a resource for adsorption-based pollution management",
pages = "67-67"
}
Mihailović, R., Zarubica, A., Matović, B.,& Butulija, S.. (2024). Activating agricultural residues: Corn cob as a resource for adsorption-based pollution management. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 67-67.
Mihailović R, Zarubica A, Matović B, Butulija S. Activating agricultural residues: Corn cob as a resource for adsorption-based pollution management. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:67-67..
Mihailović, Ružica, Zarubica, Aleksandra, Matović, Branko, Butulija, Svetlana, "Activating agricultural residues: Corn cob as a resource for adsorption-based pollution management" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):67-67.

Structure-property relationship of AlN/BN mixed compounds on DFT level

Zagorac, Dejan; Zagorac, Jelena; Fonović, Matej; Škundrić, Tamara; Pejić, Milan; Jovanović, Dušica; Đukić, Miloš B.; Matović, Branko

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Zagorac, Dejan
AU  - Zagorac, Jelena
AU  - Fonović, Matej
AU  - Škundrić, Tamara
AU  - Pejić, Milan
AU  - Jovanović, Dušica
AU  - Đukić, Miloš B.
AU  - Matović, Branko
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13165
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Structure-property relationship of AlN/BN mixed compounds on DFT level
SP  - 70
EP  - 70
ER  - 
@conference{
author = "Zagorac, Dejan and Zagorac, Jelena and Fonović, Matej and Škundrić, Tamara and Pejić, Milan and Jovanović, Dušica and Đukić, Miloš B. and Matović, Branko",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Structure-property relationship of AlN/BN mixed compounds on DFT level",
pages = "70-70"
}
Zagorac, D., Zagorac, J., Fonović, M., Škundrić, T., Pejić, M., Jovanović, D., Đukić, M. B.,& Matović, B.. (2024). Structure-property relationship of AlN/BN mixed compounds on DFT level. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 70-70.
Zagorac D, Zagorac J, Fonović M, Škundrić T, Pejić M, Jovanović D, Đukić MB, Matović B. Structure-property relationship of AlN/BN mixed compounds on DFT level. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:70-70..
Zagorac, Dejan, Zagorac, Jelena, Fonović, Matej, Škundrić, Tamara, Pejić, Milan, Jovanović, Dušica, Đukić, Miloš B., Matović, Branko, "Structure-property relationship of AlN/BN mixed compounds on DFT level" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):70-70.

Multidisciplinary approach in investigating ZnO/ZnS core/shell nanostructures

Zagorac, Jelena; Jovanović, Dušica; Zagorac, Dejan; Škundrić, Tamara; Pejić, Milan; Šrot, Vesna; Matović, Branko

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Zagorac, Jelena
AU  - Jovanović, Dušica
AU  - Zagorac, Dejan
AU  - Škundrić, Tamara
AU  - Pejić, Milan
AU  - Šrot, Vesna
AU  - Matović, Branko
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13166
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Multidisciplinary approach in investigating ZnO/ZnS core/shell nanostructures
SP  - 72
EP  - 72
ER  - 
@conference{
author = "Zagorac, Jelena and Jovanović, Dušica and Zagorac, Dejan and Škundrić, Tamara and Pejić, Milan and Šrot, Vesna and Matović, Branko",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Multidisciplinary approach in investigating ZnO/ZnS core/shell nanostructures",
pages = "72-72"
}
Zagorac, J., Jovanović, D., Zagorac, D., Škundrić, T., Pejić, M., Šrot, V.,& Matović, B.. (2024). Multidisciplinary approach in investigating ZnO/ZnS core/shell nanostructures. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 72-72.
Zagorac J, Jovanović D, Zagorac D, Škundrić T, Pejić M, Šrot V, Matović B. Multidisciplinary approach in investigating ZnO/ZnS core/shell nanostructures. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:72-72..
Zagorac, Jelena, Jovanović, Dušica, Zagorac, Dejan, Škundrić, Tamara, Pejić, Milan, Šrot, Vesna, Matović, Branko, "Multidisciplinary approach in investigating ZnO/ZnS core/shell nanostructures" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):72-72.

Bacterial Cellulose-Cerium Oxide Hydrogel for Tailored Redox Balance in Biomedical Extremes

Butulija, Svetlana; Filipović Tričković, Jelena; Valenta Šobot, Ana; Todorović, Bratislav; Petrović, Sanja; Ilić, Bojana; Zmejkoski, Danica; Matović, Branko

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Butulija, Svetlana
AU  - Filipović Tričković, Jelena
AU  - Valenta Šobot, Ana
AU  - Todorović, Bratislav
AU  - Petrović, Sanja
AU  - Ilić, Bojana
AU  - Zmejkoski, Danica
AU  - Matović, Branko
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13167
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Bacterial Cellulose-Cerium Oxide Hydrogel for Tailored Redox Balance in Biomedical Extremes
SP  - 73
EP  - 73
ER  - 
@conference{
author = "Butulija, Svetlana and Filipović Tričković, Jelena and Valenta Šobot, Ana and Todorović, Bratislav and Petrović, Sanja and Ilić, Bojana and Zmejkoski, Danica and Matović, Branko",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Bacterial Cellulose-Cerium Oxide Hydrogel for Tailored Redox Balance in Biomedical Extremes",
pages = "73-73"
}
Butulija, S., Filipović Tričković, J., Valenta Šobot, A., Todorović, B., Petrović, S., Ilić, B., Zmejkoski, D.,& Matović, B.. (2024). Bacterial Cellulose-Cerium Oxide Hydrogel for Tailored Redox Balance in Biomedical Extremes. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 73-73.
Butulija S, Filipović Tričković J, Valenta Šobot A, Todorović B, Petrović S, Ilić B, Zmejkoski D, Matović B. Bacterial Cellulose-Cerium Oxide Hydrogel for Tailored Redox Balance in Biomedical Extremes. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:73-73..
Butulija, Svetlana, Filipović Tričković, Jelena, Valenta Šobot, Ana, Todorović, Bratislav, Petrović, Sanja, Ilić, Bojana, Zmejkoski, Danica, Matović, Branko, "Bacterial Cellulose-Cerium Oxide Hydrogel for Tailored Redox Balance in Biomedical Extremes" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):73-73.

High-entropy stabilized Zr0.2Hf0.2Ce0.2Yb0.2Gd0.2O2-δ with fluorite structure

Prekajski Đorđević, Marija; Maletaškić, Jelena; Butulija, Svetlana; Nidžović, Emilija; Luković, Aleksa; Kumar, Ravi; Matović, Branko

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Prekajski Đorđević, Marija
AU  - Maletaškić, Jelena
AU  - Butulija, Svetlana
AU  - Nidžović, Emilija
AU  - Luković, Aleksa
AU  - Kumar, Ravi
AU  - Matović, Branko
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13168
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - High-entropy stabilized Zr0.2Hf0.2Ce0.2Yb0.2Gd0.2O2-δ with fluorite structure
SP  - 74
EP  - 74
ER  - 
@conference{
author = "Prekajski Đorđević, Marija and Maletaškić, Jelena and Butulija, Svetlana and Nidžović, Emilija and Luković, Aleksa and Kumar, Ravi and Matović, Branko",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "High-entropy stabilized Zr0.2Hf0.2Ce0.2Yb0.2Gd0.2O2-δ with fluorite structure",
pages = "74-74"
}
Prekajski Đorđević, M., Maletaškić, J., Butulija, S., Nidžović, E., Luković, A., Kumar, R.,& Matović, B.. (2024). High-entropy stabilized Zr0.2Hf0.2Ce0.2Yb0.2Gd0.2O2-δ with fluorite structure. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 74-74.
Prekajski Đorđević M, Maletaškić J, Butulija S, Nidžović E, Luković A, Kumar R, Matović B. High-entropy stabilized Zr0.2Hf0.2Ce0.2Yb0.2Gd0.2O2-δ with fluorite structure. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:74-74..
Prekajski Đorđević, Marija, Maletaškić, Jelena, Butulija, Svetlana, Nidžović, Emilija, Luković, Aleksa, Kumar, Ravi, Matović, Branko, "High-entropy stabilized Zr0.2Hf0.2Ce0.2Yb0.2Gd0.2O2-δ with fluorite structure" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):74-74.

Novel high entropy alloys for extreme environments

Cvijović-Alagić, Ivana; Kanas, Nikola; Maletaškić, Jelena; Abishek, M.; Maksimović, Vesna

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Cvijović-Alagić, Ivana
AU  - Kanas, Nikola
AU  - Maletaškić, Jelena
AU  - Abishek, M.
AU  - Maksimović, Vesna
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13149
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Novel high entropy alloys for extreme environments
SP  - 50
EP  - 50
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13149
ER  - 
@conference{
author = "Cvijović-Alagić, Ivana and Kanas, Nikola and Maletaškić, Jelena and Abishek, M. and Maksimović, Vesna",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Novel high entropy alloys for extreme environments",
pages = "50-50",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13149"
}
Cvijović-Alagić, I., Kanas, N., Maletaškić, J., Abishek, M.,& Maksimović, V.. (2024). Novel high entropy alloys for extreme environments. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 50-50.
https://hdl.handle.net/21.15107/rcub_vinar_13149
Cvijović-Alagić I, Kanas N, Maletaškić J, Abishek M, Maksimović V. Novel high entropy alloys for extreme environments. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:50-50.
https://hdl.handle.net/21.15107/rcub_vinar_13149 .
Cvijović-Alagić, Ivana, Kanas, Nikola, Maletaškić, Jelena, Abishek, M., Maksimović, Vesna, "Novel high entropy alloys for extreme environments" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):50-50,
https://hdl.handle.net/21.15107/rcub_vinar_13149 .

Characterization of the high-pressure sintered TiAl-TiB2 composites

Maksimović, Vesna; Urbanovich, Vladimir; Maletaškić, Jelena; Pavkov, Vladimir; Cvijović-Alagić, Ivana

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Maksimović, Vesna
AU  - Urbanovich, Vladimir
AU  - Maletaškić, Jelena
AU  - Pavkov, Vladimir
AU  - Cvijović-Alagić, Ivana
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13150
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Characterization of the high-pressure sintered TiAl-TiB2 composites
SP  - 51
EP  - 51
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13150
ER  - 
@conference{
author = "Maksimović, Vesna and Urbanovich, Vladimir and Maletaškić, Jelena and Pavkov, Vladimir and Cvijović-Alagić, Ivana",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Characterization of the high-pressure sintered TiAl-TiB2 composites",
pages = "51-51",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13150"
}
Maksimović, V., Urbanovich, V., Maletaškić, J., Pavkov, V.,& Cvijović-Alagić, I.. (2024). Characterization of the high-pressure sintered TiAl-TiB2 composites. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 51-51.
https://hdl.handle.net/21.15107/rcub_vinar_13150
Maksimović V, Urbanovich V, Maletaškić J, Pavkov V, Cvijović-Alagić I. Characterization of the high-pressure sintered TiAl-TiB2 composites. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:51-51.
https://hdl.handle.net/21.15107/rcub_vinar_13150 .
Maksimović, Vesna, Urbanovich, Vladimir, Maletaškić, Jelena, Pavkov, Vladimir, Cvijović-Alagić, Ivana, "Characterization of the high-pressure sintered TiAl-TiB2 composites" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):51-51,
https://hdl.handle.net/21.15107/rcub_vinar_13150 .

The influence of stainless steel particles reinforcement on the fracture toughness of glass-ceramic matrix composite

Pavkov, Vladimir; Bakić, Gordana; Maksimović, Vesna; Cvijović-Alagić, Ivana; Maslarević, Aleksandar; Rajičić, Bratislav; Milošević, Nenad

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Pavkov, Vladimir
AU  - Bakić, Gordana
AU  - Maksimović, Vesna
AU  - Cvijović-Alagić, Ivana
AU  - Maslarević, Aleksandar
AU  - Rajičić, Bratislav
AU  - Milošević, Nenad
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13163
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13164
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - The influence of stainless steel particles reinforcement on the fracture toughness of glass-ceramic matrix composite
SP  - 68
EP  - 68
ER  - 
@conference{
author = "Pavkov, Vladimir and Bakić, Gordana and Maksimović, Vesna and Cvijović-Alagić, Ivana and Maslarević, Aleksandar and Rajičić, Bratislav and Milošević, Nenad",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "The influence of stainless steel particles reinforcement on the fracture toughness of glass-ceramic matrix composite",
pages = "68-68"
}
Pavkov, V., Bakić, G., Maksimović, V., Cvijović-Alagić, I., Maslarević, A., Rajičić, B.,& Milošević, N.. (2024). The influence of stainless steel particles reinforcement on the fracture toughness of glass-ceramic matrix composite. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 68-68.
Pavkov V, Bakić G, Maksimović V, Cvijović-Alagić I, Maslarević A, Rajičić B, Milošević N. The influence of stainless steel particles reinforcement on the fracture toughness of glass-ceramic matrix composite. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:68-68..
Pavkov, Vladimir, Bakić, Gordana, Maksimović, Vesna, Cvijović-Alagić, Ivana, Maslarević, Aleksandar, Rajičić, Bratislav, Milošević, Nenad, "The influence of stainless steel particles reinforcement on the fracture toughness of glass-ceramic matrix composite" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):68-68.

Energy landscape exploration of the novel CrSi2N4 compound

Škundrić, Tamara; Schön, Johann Christian; Zarubica, Aleksandra; Fonović, Matej; Pejić, Milan; Zagorac, Jelena; Zagorac, Dejan

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Škundrić, Tamara
AU  - Schön, Johann Christian
AU  - Zarubica, Aleksandra
AU  - Fonović, Matej
AU  - Pejić, Milan
AU  - Zagorac, Jelena
AU  - Zagorac, Dejan
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13154
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Energy landscape exploration of the novel CrSi2N4 compound
SP  - 56
EP  - 56
ER  - 
@conference{
author = "Škundrić, Tamara and Schön, Johann Christian and Zarubica, Aleksandra and Fonović, Matej and Pejić, Milan and Zagorac, Jelena and Zagorac, Dejan",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Energy landscape exploration of the novel CrSi2N4 compound",
pages = "56-56"
}
Škundrić, T., Schön, J. C., Zarubica, A., Fonović, M., Pejić, M., Zagorac, J.,& Zagorac, D.. (2024). Energy landscape exploration of the novel CrSi2N4 compound. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 56-56.
Škundrić T, Schön JC, Zarubica A, Fonović M, Pejić M, Zagorac J, Zagorac D. Energy landscape exploration of the novel CrSi2N4 compound. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:56-56..
Škundrić, Tamara, Schön, Johann Christian, Zarubica, Aleksandra, Fonović, Matej, Pejić, Milan, Zagorac, Jelena, Zagorac, Dejan, "Energy landscape exploration of the novel CrSi2N4 compound" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):56-56.

Structural properties of full-scope AlN/BN compounds investigated using ab initio calculations

Zagorac, Jelena; Fonović, Matej; Đukić, Miloš B.; Butulija, Svetlana; Prikhna, Tatiana; Zagorac, Dejan

(2024)

TY  - CONF
AU  - Zagorac, Jelena
AU  - Fonović, Matej
AU  - Đukić, Miloš B.
AU  - Butulija, Svetlana
AU  - Prikhna, Tatiana
AU  - Zagorac, Dejan
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12918
AB  - In the last few decades, aluminum nitride (AlN) and boron nitride (BN) have become a point of interest to many researchers and scholars from different disciplines around the world. Due to its attractive properties, AlN has been successfully used in various applications, starting from advanced ceramics materials, additive for grain size control in micro-alloyed steels, through optoelectronics and microelectronics, and finally to semiconductors. On the other hand, BN has broad applications in various fields, such as 2D material, lubricant material, superhard and semiconductor material as well as many others. This study focuses on the mixed AlN/BN compounds, in particular, boron-rich AlN and aluminum-rich BN systems, thus having the entire range of AlN/BN compositions. The special focus was on structural properties investigated using the hybrid B3LYP method. Important structural properties were investigated to offer novel technological and industrial applications of mixed AlN/BN materials.
C3  - Procedia Structural Integrity
T1  - Structural properties of full-scope AlN/BN compounds investigated using ab initio calculations
VL  - 54
SP  - 453
EP  - 459
DO  - 10.1016/j.prostr.2024.01.106
ER  - 
@conference{
author = "Zagorac, Jelena and Fonović, Matej and Đukić, Miloš B. and Butulija, Svetlana and Prikhna, Tatiana and Zagorac, Dejan",
year = "2024",
abstract = "In the last few decades, aluminum nitride (AlN) and boron nitride (BN) have become a point of interest to many researchers and scholars from different disciplines around the world. Due to its attractive properties, AlN has been successfully used in various applications, starting from advanced ceramics materials, additive for grain size control in micro-alloyed steels, through optoelectronics and microelectronics, and finally to semiconductors. On the other hand, BN has broad applications in various fields, such as 2D material, lubricant material, superhard and semiconductor material as well as many others. This study focuses on the mixed AlN/BN compounds, in particular, boron-rich AlN and aluminum-rich BN systems, thus having the entire range of AlN/BN compositions. The special focus was on structural properties investigated using the hybrid B3LYP method. Important structural properties were investigated to offer novel technological and industrial applications of mixed AlN/BN materials.",
journal = "Procedia Structural Integrity",
title = "Structural properties of full-scope AlN/BN compounds investigated using ab initio calculations",
volume = "54",
pages = "453-459",
doi = "10.1016/j.prostr.2024.01.106"
}
Zagorac, J., Fonović, M., Đukić, M. B., Butulija, S., Prikhna, T.,& Zagorac, D.. (2024). Structural properties of full-scope AlN/BN compounds investigated using ab initio calculations. in Procedia Structural Integrity, 54, 453-459.
https://doi.org/10.1016/j.prostr.2024.01.106
Zagorac J, Fonović M, Đukić MB, Butulija S, Prikhna T, Zagorac D. Structural properties of full-scope AlN/BN compounds investigated using ab initio calculations. in Procedia Structural Integrity. 2024;54:453-459.
doi:10.1016/j.prostr.2024.01.106 .
Zagorac, Jelena, Fonović, Matej, Đukić, Miloš B., Butulija, Svetlana, Prikhna, Tatiana, Zagorac, Dejan, "Structural properties of full-scope AlN/BN compounds investigated using ab initio calculations" in Procedia Structural Integrity, 54 (2024):453-459,
https://doi.org/10.1016/j.prostr.2024.01.106 . .

Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light

Zmejkoski, Danica; Zdravković, Nemanja M.; Budimir Filimonović, Milica D.; Pavlović, Vladimir B.; Butulija, Svetlana; Milivojević, Dušan; Marković, Zoran M.; Todorović Marković, Biljana M.

(2024)

TY  - JOUR
AU  - Zmejkoski, Danica
AU  - Zdravković, Nemanja M.
AU  - Budimir Filimonović, Milica D.
AU  - Pavlović, Vladimir B.
AU  - Butulija, Svetlana
AU  - Milivojević, Dušan
AU  - Marković, Zoran M.
AU  - Todorović Marković, Biljana M.
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12990
AB  - In this study, nanochitosan dots (ChiDs) were synthesized using gamma rays and encapsulated in bacterial cellulose (BC) polymer matrix for antibiofilm potential in photodynamic therapy. The composites were analyzed for structural changes using SEM, AFM, FTIR, XRD, EPR, and porosity measurements. Additionally, ChiD release was assessed. The results showed that the chemical composition remained unaltered, but ChiD agglomerates embedded in BC changed shape (1.5–2.5 µm). Bacterial cellulose fibers became deformed and interconnected, with increased surface roughness and porosity and decreased crystallinity. No singlet oxygen formation was observed, and the total amount of released ChiD was up to 16.10%. Antibiofilm activity was higher under green light, with reductions ranging from 48 to 57% under blue light and 78 to 85% under green light. Methicillin-resistant Staphylococcus aureus was the most sensitive strain. The new photoactive composite hydrogels show promising potential for combating biofilm-related infections.
T2  - Journal of Functional Biomaterials
T1  - Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light
VL  - 15
IS  - 3
SP  - 72
DO  - 10.3390/jfb15030072
ER  - 
@article{
author = "Zmejkoski, Danica and Zdravković, Nemanja M. and Budimir Filimonović, Milica D. and Pavlović, Vladimir B. and Butulija, Svetlana and Milivojević, Dušan and Marković, Zoran M. and Todorović Marković, Biljana M.",
year = "2024",
abstract = "In this study, nanochitosan dots (ChiDs) were synthesized using gamma rays and encapsulated in bacterial cellulose (BC) polymer matrix for antibiofilm potential in photodynamic therapy. The composites were analyzed for structural changes using SEM, AFM, FTIR, XRD, EPR, and porosity measurements. Additionally, ChiD release was assessed. The results showed that the chemical composition remained unaltered, but ChiD agglomerates embedded in BC changed shape (1.5–2.5 µm). Bacterial cellulose fibers became deformed and interconnected, with increased surface roughness and porosity and decreased crystallinity. No singlet oxygen formation was observed, and the total amount of released ChiD was up to 16.10%. Antibiofilm activity was higher under green light, with reductions ranging from 48 to 57% under blue light and 78 to 85% under green light. Methicillin-resistant Staphylococcus aureus was the most sensitive strain. The new photoactive composite hydrogels show promising potential for combating biofilm-related infections.",
journal = "Journal of Functional Biomaterials",
title = "Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light",
volume = "15",
number = "3",
pages = "72",
doi = "10.3390/jfb15030072"
}
Zmejkoski, D., Zdravković, N. M., Budimir Filimonović, M. D., Pavlović, V. B., Butulija, S., Milivojević, D., Marković, Z. M.,& Todorović Marković, B. M.. (2024). Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light. in Journal of Functional Biomaterials, 15(3), 72.
https://doi.org/10.3390/jfb15030072
Zmejkoski D, Zdravković NM, Budimir Filimonović MD, Pavlović VB, Butulija S, Milivojević D, Marković ZM, Todorović Marković BM. Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light. in Journal of Functional Biomaterials. 2024;15(3):72.
doi:10.3390/jfb15030072 .
Zmejkoski, Danica, Zdravković, Nemanja M., Budimir Filimonović, Milica D., Pavlović, Vladimir B., Butulija, Svetlana, Milivojević, Dušan, Marković, Zoran M., Todorović Marković, Biljana M., "Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light" in Journal of Functional Biomaterials, 15, no. 3 (2024):72,
https://doi.org/10.3390/jfb15030072 . .

Preparation of Ca0.9Er0.1MnO3 nanopowders by combustion method

Vlašković, Tijana; Laban, Bojana; Čebela, Maria; Dodevski, Vladimir; Jordanov, Dragana; Rosić, Milena

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Vlašković, Tijana
AU  - Laban, Bojana
AU  - Čebela, Maria
AU  - Dodevski, Vladimir
AU  - Jordanov, Dragana
AU  - Rosić, Milena
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13162
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Preparation of Ca0.9Er0.1MnO3 nanopowders by combustion method
SP  - 66
EP  - 66
ER  - 
@conference{
author = "Vlašković, Tijana and Laban, Bojana and Čebela, Maria and Dodevski, Vladimir and Jordanov, Dragana and Rosić, Milena",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Preparation of Ca0.9Er0.1MnO3 nanopowders by combustion method",
pages = "66-66"
}
Vlašković, T., Laban, B., Čebela, M., Dodevski, V., Jordanov, D.,& Rosić, M.. (2024). Preparation of Ca0.9Er0.1MnO3 nanopowders by combustion method. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 66-66.
Vlašković T, Laban B, Čebela M, Dodevski V, Jordanov D, Rosić M. Preparation of Ca0.9Er0.1MnO3 nanopowders by combustion method. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:66-66..
Vlašković, Tijana, Laban, Bojana, Čebela, Maria, Dodevski, Vladimir, Jordanov, Dragana, Rosić, Milena, "Preparation of Ca0.9Er0.1MnO3 nanopowders by combustion method" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):66-66.

Spectroscopicand Morphological Properties of Co0.9Ho0.1MoO4 nanopowders

Rosić, Milena; Milošević, Maja; Dodevski, Vladimir; Jordanov, Dragana; Lojpur, Vesna; Vlašković, Tijana; Čebela, Maria

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Rosić, Milena
AU  - Milošević, Maja
AU  - Dodevski, Vladimir
AU  - Jordanov, Dragana
AU  - Lojpur, Vesna
AU  - Vlašković, Tijana
AU  - Čebela, Maria
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13160
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Spectroscopicand Morphological Properties of Co0.9Ho0.1MoO4 nanopowders
SP  - 64
EP  - 64
ER  - 
@conference{
author = "Rosić, Milena and Milošević, Maja and Dodevski, Vladimir and Jordanov, Dragana and Lojpur, Vesna and Vlašković, Tijana and Čebela, Maria",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Spectroscopicand Morphological Properties of Co0.9Ho0.1MoO4 nanopowders",
pages = "64-64"
}
Rosić, M., Milošević, M., Dodevski, V., Jordanov, D., Lojpur, V., Vlašković, T.,& Čebela, M.. (2024). Spectroscopicand Morphological Properties of Co0.9Ho0.1MoO4 nanopowders. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 64-64.
Rosić M, Milošević M, Dodevski V, Jordanov D, Lojpur V, Vlašković T, Čebela M. Spectroscopicand Morphological Properties of Co0.9Ho0.1MoO4 nanopowders. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:64-64..
Rosić, Milena, Milošević, Maja, Dodevski, Vladimir, Jordanov, Dragana, Lojpur, Vesna, Vlašković, Tijana, Čebela, Maria, "Spectroscopicand Morphological Properties of Co0.9Ho0.1MoO4 nanopowders" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):64-64.

Mineralogical Characterization of the Grot Lead and Zinc Mine Tailings from Aspects of Their Further Use as Raw Material

Gulicovski, Jelena; Stojmenović, Marija; Rosić, Milena; Vasić, Andrijana; Ristović, Ivica; Janković-Častvan, Ivona; Kragović, Milan

(2024)

TY  - JOUR
AU  - Gulicovski, Jelena
AU  - Stojmenović, Marija
AU  - Rosić, Milena
AU  - Vasić, Andrijana
AU  - Ristović, Ivica
AU  - Janković-Častvan, Ivona
AU  - Kragović, Milan
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12917
AB  - The possibility of using waste tailings produced by flotation in the lead and zinc mine of Grot, Serbia as a potential source of secondary mineral raw materials was examined. The aim of the research was primarily to carry out a detailed characterization in order to determine the dominant minerals, and, for the first time, to trace the changes occurring in the unit cells of the minerals present in that deposit. There was also a need to determine the exact proportions of the present mineral phases for their further application and utilization as natural resources in environmental protection. Samples were taken from three different sections of tailings: the crest of dam (JKB), outlet pipe of the flotation facility (JOF) and hydrocyclone overflow (JHC). Granulometric separation was performed to facilitate the extraction of certain minerals from waste. The results showed that all samples mainly contained quartz, clinochlore, calcite, albite, pyrite and biotite, but their ratios in each sample varied significantly. After characterization, samples were separated into different fractions and their mineralogical compositions were determined. Depending on the fraction, the mineralogical compositions also changed. Mineralogy and geochemical analysis indicate that waste tailings can be used as a secondary mineral raw materials source applicable in various industries.
T2  - Applied Sciences
T1  - Mineralogical Characterization of the Grot Lead and Zinc Mine Tailings from Aspects of Their Further Use as Raw Material
VL  - 14
IS  - 3
SP  - 1167
DO  - 10.3390/app14031167
ER  - 
@article{
author = "Gulicovski, Jelena and Stojmenović, Marija and Rosić, Milena and Vasić, Andrijana and Ristović, Ivica and Janković-Častvan, Ivona and Kragović, Milan",
year = "2024",
abstract = "The possibility of using waste tailings produced by flotation in the lead and zinc mine of Grot, Serbia as a potential source of secondary mineral raw materials was examined. The aim of the research was primarily to carry out a detailed characterization in order to determine the dominant minerals, and, for the first time, to trace the changes occurring in the unit cells of the minerals present in that deposit. There was also a need to determine the exact proportions of the present mineral phases for their further application and utilization as natural resources in environmental protection. Samples were taken from three different sections of tailings: the crest of dam (JKB), outlet pipe of the flotation facility (JOF) and hydrocyclone overflow (JHC). Granulometric separation was performed to facilitate the extraction of certain minerals from waste. The results showed that all samples mainly contained quartz, clinochlore, calcite, albite, pyrite and biotite, but their ratios in each sample varied significantly. After characterization, samples were separated into different fractions and their mineralogical compositions were determined. Depending on the fraction, the mineralogical compositions also changed. Mineralogy and geochemical analysis indicate that waste tailings can be used as a secondary mineral raw materials source applicable in various industries.",
journal = "Applied Sciences",
title = "Mineralogical Characterization of the Grot Lead and Zinc Mine Tailings from Aspects of Their Further Use as Raw Material",
volume = "14",
number = "3",
pages = "1167",
doi = "10.3390/app14031167"
}
Gulicovski, J., Stojmenović, M., Rosić, M., Vasić, A., Ristović, I., Janković-Častvan, I.,& Kragović, M.. (2024). Mineralogical Characterization of the Grot Lead and Zinc Mine Tailings from Aspects of Their Further Use as Raw Material. in Applied Sciences, 14(3), 1167.
https://doi.org/10.3390/app14031167
Gulicovski J, Stojmenović M, Rosić M, Vasić A, Ristović I, Janković-Častvan I, Kragović M. Mineralogical Characterization of the Grot Lead and Zinc Mine Tailings from Aspects of Their Further Use as Raw Material. in Applied Sciences. 2024;14(3):1167.
doi:10.3390/app14031167 .
Gulicovski, Jelena, Stojmenović, Marija, Rosić, Milena, Vasić, Andrijana, Ristović, Ivica, Janković-Častvan, Ivona, Kragović, Milan, "Mineralogical Characterization of the Grot Lead and Zinc Mine Tailings from Aspects of Their Further Use as Raw Material" in Applied Sciences, 14, no. 3 (2024):1167,
https://doi.org/10.3390/app14031167 . .