U.S. Department of Energy Office of Science, Office of Basic Energy Sciences [DE-FC02-04ER15533, 5098]

Link to this page

U.S. Department of Energy Office of Science, Office of Basic Energy Sciences [DE-FC02-04ER15533, 5098]

Authors

Publications

Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles

Trandafilović, Lidija V.; Jovanović, Dragana J.; Zhang, X.; Ptasinska, Sylwia; Dramićanin, Miroslav

(2017)

TY  - JOUR
AU  - Trandafilović, Lidija V.
AU  - Jovanović, Dragana J.
AU  - Zhang, X.
AU  - Ptasinska, Sylwia
AU  - Dramićanin, Miroslav
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1369
AB  - ZnO nanoparticles doped with different Eu3+ percentages were synthesized in water (ZnO: Eu(chi%)-W) and other solvents (methanol ZnO:Eu(chi%)-M and ethanol ZnO:Eu(chi%)-E). X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), optical absorption and photoluminescence (PL) spectroscopy were used for characterization of the nanoparticles. Our results showed influence of europium doping and solvents on size, particles agglomeration, light absorption and photo catalytic activity. Improvement in photocatalytical activity with addition of Eu3+ doping was detected. Particle size increased with Eu3+ doping in water samples, while it decreased in methanol. Agglomeration was more prominent in ZnO:Eu(chi%)-W samples. Greater amount of surface OH groups in case of ZnO:Eu(chi%)-M samples was detected by PL, XPS and FTIR measurements. Influence of europium doping, as an electron trap, and surface OH groups, as a hole trap, was studied in sunlight photocatalytic degradation of cationic methylene blue (MB) and anionic methyl orange (MO). Improved photocatalytic behavior was discussed and influence of active species was further investigated using hole and hydroxyle radical scavengers. The degradation pathway of MB and MO, using high performance liquid chromatohraphy (HPLC), is also examined. (C) 2016 Elsevier B.V. All rights reserved.
T2  - Applied Catalysis. B: Environmental
T1  - Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles
VL  - 203
SP  - 740
EP  - 752
DO  - 10.1016/j.apcatb.2016.10.063
ER  - 
@article{
author = "Trandafilović, Lidija V. and Jovanović, Dragana J. and Zhang, X. and Ptasinska, Sylwia and Dramićanin, Miroslav",
year = "2017",
abstract = "ZnO nanoparticles doped with different Eu3+ percentages were synthesized in water (ZnO: Eu(chi%)-W) and other solvents (methanol ZnO:Eu(chi%)-M and ethanol ZnO:Eu(chi%)-E). X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), optical absorption and photoluminescence (PL) spectroscopy were used for characterization of the nanoparticles. Our results showed influence of europium doping and solvents on size, particles agglomeration, light absorption and photo catalytic activity. Improvement in photocatalytical activity with addition of Eu3+ doping was detected. Particle size increased with Eu3+ doping in water samples, while it decreased in methanol. Agglomeration was more prominent in ZnO:Eu(chi%)-W samples. Greater amount of surface OH groups in case of ZnO:Eu(chi%)-M samples was detected by PL, XPS and FTIR measurements. Influence of europium doping, as an electron trap, and surface OH groups, as a hole trap, was studied in sunlight photocatalytic degradation of cationic methylene blue (MB) and anionic methyl orange (MO). Improved photocatalytic behavior was discussed and influence of active species was further investigated using hole and hydroxyle radical scavengers. The degradation pathway of MB and MO, using high performance liquid chromatohraphy (HPLC), is also examined. (C) 2016 Elsevier B.V. All rights reserved.",
journal = "Applied Catalysis. B: Environmental",
title = "Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles",
volume = "203",
pages = "740-752",
doi = "10.1016/j.apcatb.2016.10.063"
}
Trandafilović, L. V., Jovanović, D. J., Zhang, X., Ptasinska, S.,& Dramićanin, M.. (2017). Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles. in Applied Catalysis. B: Environmental, 203, 740-752.
https://doi.org/10.1016/j.apcatb.2016.10.063
Trandafilović LV, Jovanović DJ, Zhang X, Ptasinska S, Dramićanin M. Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles. in Applied Catalysis. B: Environmental. 2017;203:740-752.
doi:10.1016/j.apcatb.2016.10.063 .
Trandafilović, Lidija V., Jovanović, Dragana J., Zhang, X., Ptasinska, Sylwia, Dramićanin, Miroslav, "Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles" in Applied Catalysis. B: Environmental, 203 (2017):740-752,
https://doi.org/10.1016/j.apcatb.2016.10.063 . .
1
307
181
289