Federal Ministry of Education & Research (BMBF) [01EW1807A]

Link to this page

Federal Ministry of Education & Research (BMBF) [01EW1807A]

Authors

Publications

Fluoxetine modulates neuronal activity in stress-related limbic areas of adult rats subjected to the chronic social isolation

Stanisavljević, Andrijana; Perić, Ivana; Gass, Peter; Inta, Dragos; Lang, Undine E.; Borgwardt, Stefan; Filipović, Dragana

(2020)

TY  - JOUR
AU  - Stanisavljević, Andrijana
AU  - Perić, Ivana
AU  - Gass, Peter
AU  - Inta, Dragos
AU  - Lang, Undine E.
AU  - Borgwardt, Stefan
AU  - Filipović, Dragana
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9116
AB  - Antidepressant fluoxetine (Flx) is the first therapeutic choice for the treatment of major depression (MD), however neuroanatomical spots of its action remain unclear. Immunohistochemical detection of c-Fos protein expression has been used for mapping activated neuronal circuits upon various stressors and drugs. We investigated the effect of 3 weeks of Flx treatment (15 mg/kg/day) on changes in neuronal activity, by mapping the number of c-Fos+ cells, in several brain subregions in adult male rats of control and following 3 weeks of chronic social isolation (CSIS), an animal model of depression. The aim was to identify brain subregions activated by vehicle or Flx treatment in both controls or simultaneously applied with CSIS. Flx prevented depressive- and anxiety-like behaviors in CSIS rats. In controls, Flx increased the number of c-Fos+ cells in the anterior/posterior piriform cortex (aPirCx, pPirCx), retrosplenial cortex dysgranular (RSD) and granular, c region (RSGc), dorsal hippocampal subregions (CA1d, CA2, CA3d, DGd), lateral habenula (LHB), paraventricular thalamic nucleus, posterior part (PVP) and lateral/basolateral complex of amygdala (LA/BL). CSIS-induced neuronal activation was observed in brain subregions implicated in mood and other mental disorders such as aPirCx, pPirCx, caudate putamen (CPu), acumbens nucleus shell (AcbSh), RSD, RSGc, DGd, PVP and LA/BL. Flx increased neuronal activation in both controls and CSIS rats in the CA1d, CA2, CA3d, PVP, LA/BL, while in striatum increased neuronal activation was observed only in CSIS. Our data identify activated CSIS-related brain subregions and/or Flx treatment, in which Flx increased c-Fos protein expression in CSIS rats.
T2  - Brain Research Bulletin
T1  - Fluoxetine modulates neuronal activity in stress-related limbic areas of adult rats subjected to the chronic social isolation
VL  - 163
SP  - 95
EP  - 108
DO  - 10.1016/j.brainresbull.2020.07.021
ER  - 
@article{
author = "Stanisavljević, Andrijana and Perić, Ivana and Gass, Peter and Inta, Dragos and Lang, Undine E. and Borgwardt, Stefan and Filipović, Dragana",
year = "2020",
abstract = "Antidepressant fluoxetine (Flx) is the first therapeutic choice for the treatment of major depression (MD), however neuroanatomical spots of its action remain unclear. Immunohistochemical detection of c-Fos protein expression has been used for mapping activated neuronal circuits upon various stressors and drugs. We investigated the effect of 3 weeks of Flx treatment (15 mg/kg/day) on changes in neuronal activity, by mapping the number of c-Fos+ cells, in several brain subregions in adult male rats of control and following 3 weeks of chronic social isolation (CSIS), an animal model of depression. The aim was to identify brain subregions activated by vehicle or Flx treatment in both controls or simultaneously applied with CSIS. Flx prevented depressive- and anxiety-like behaviors in CSIS rats. In controls, Flx increased the number of c-Fos+ cells in the anterior/posterior piriform cortex (aPirCx, pPirCx), retrosplenial cortex dysgranular (RSD) and granular, c region (RSGc), dorsal hippocampal subregions (CA1d, CA2, CA3d, DGd), lateral habenula (LHB), paraventricular thalamic nucleus, posterior part (PVP) and lateral/basolateral complex of amygdala (LA/BL). CSIS-induced neuronal activation was observed in brain subregions implicated in mood and other mental disorders such as aPirCx, pPirCx, caudate putamen (CPu), acumbens nucleus shell (AcbSh), RSD, RSGc, DGd, PVP and LA/BL. Flx increased neuronal activation in both controls and CSIS rats in the CA1d, CA2, CA3d, PVP, LA/BL, while in striatum increased neuronal activation was observed only in CSIS. Our data identify activated CSIS-related brain subregions and/or Flx treatment, in which Flx increased c-Fos protein expression in CSIS rats.",
journal = "Brain Research Bulletin",
title = "Fluoxetine modulates neuronal activity in stress-related limbic areas of adult rats subjected to the chronic social isolation",
volume = "163",
pages = "95-108",
doi = "10.1016/j.brainresbull.2020.07.021"
}
Stanisavljević, A., Perić, I., Gass, P., Inta, D., Lang, U. E., Borgwardt, S.,& Filipović, D.. (2020). Fluoxetine modulates neuronal activity in stress-related limbic areas of adult rats subjected to the chronic social isolation. in Brain Research Bulletin, 163, 95-108.
https://doi.org/10.1016/j.brainresbull.2020.07.021
Stanisavljević A, Perić I, Gass P, Inta D, Lang UE, Borgwardt S, Filipović D. Fluoxetine modulates neuronal activity in stress-related limbic areas of adult rats subjected to the chronic social isolation. in Brain Research Bulletin. 2020;163:95-108.
doi:10.1016/j.brainresbull.2020.07.021 .
Stanisavljević, Andrijana, Perić, Ivana, Gass, Peter, Inta, Dragos, Lang, Undine E., Borgwardt, Stefan, Filipović, Dragana, "Fluoxetine modulates neuronal activity in stress-related limbic areas of adult rats subjected to the chronic social isolation" in Brain Research Bulletin, 163 (2020):95-108,
https://doi.org/10.1016/j.brainresbull.2020.07.021 . .
1
8
2
7