National Science Foundation (US) [2015616], Binational Science Foundation (US-Israel) [2015616], Institute for Basic Science, South Korea [IBS-R024-D1]

Link to this page

National Science Foundation (US) [2015616], Binational Science Foundation (US-Israel) [2015616], Institute for Basic Science, South Korea [IBS-R024-D1]

Authors

Publications

Nonlinear localized flat-band modes with spin-orbit coupling

Gligorić, Goran; Maluckov, Aleksandra; Hadžievski, Ljupčo; Flach, Sergej; Malomed, Boris A.

(2016)

TY  - JOUR
AU  - Gligorić, Goran
AU  - Maluckov, Aleksandra
AU  - Hadžievski, Ljupčo
AU  - Flach, Sergej
AU  - Malomed, Boris A.
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8840
AB  - We report the coexistence and properties of stable compact localized states (CLSs) and discrete solitons (DSs) for nonlinear spinor waves on a flat-band network with spin-orbit coupling (SOC). The system can be implemented by means of a binary Bose-Einstein condensate loaded in the corresponding optical lattice. In the linear limit, the SOC opens a minigap between flat and dispersive bands in the systems band-gap structure, and preserves the existence of CLSs at the flat-band frequency, simultaneously lowering their symmetry. Adding on-site cubic nonlinearity, the CLSs persist and remain available in an exact analytical form, with frequencies that are smoothly tuned into the minigap. Inside of the minigap, the CLS and DS families are stable in narrow areas adjacent to the FB. Deep inside the semi-infinite gap, both the CLSs and DSs are stable too.
T2  - Physical Review B: Condensed Matter and Materials Physics
T1  - Nonlinear localized flat-band modes with spin-orbit coupling
VL  - 94
IS  - 14
SP  - 144302
DO  - 10.1103/PhysRevB.94.144302
ER  - 
@article{
author = "Gligorić, Goran and Maluckov, Aleksandra and Hadžievski, Ljupčo and Flach, Sergej and Malomed, Boris A.",
year = "2016",
abstract = "We report the coexistence and properties of stable compact localized states (CLSs) and discrete solitons (DSs) for nonlinear spinor waves on a flat-band network with spin-orbit coupling (SOC). The system can be implemented by means of a binary Bose-Einstein condensate loaded in the corresponding optical lattice. In the linear limit, the SOC opens a minigap between flat and dispersive bands in the systems band-gap structure, and preserves the existence of CLSs at the flat-band frequency, simultaneously lowering their symmetry. Adding on-site cubic nonlinearity, the CLSs persist and remain available in an exact analytical form, with frequencies that are smoothly tuned into the minigap. Inside of the minigap, the CLS and DS families are stable in narrow areas adjacent to the FB. Deep inside the semi-infinite gap, both the CLSs and DSs are stable too.",
journal = "Physical Review B: Condensed Matter and Materials Physics",
title = "Nonlinear localized flat-band modes with spin-orbit coupling",
volume = "94",
number = "14",
pages = "144302",
doi = "10.1103/PhysRevB.94.144302"
}
Gligorić, G., Maluckov, A., Hadžievski, L., Flach, S.,& Malomed, B. A.. (2016). Nonlinear localized flat-band modes with spin-orbit coupling. in Physical Review B: Condensed Matter and Materials Physics, 94(14), 144302.
https://doi.org/10.1103/PhysRevB.94.144302
Gligorić G, Maluckov A, Hadžievski L, Flach S, Malomed BA. Nonlinear localized flat-band modes with spin-orbit coupling. in Physical Review B: Condensed Matter and Materials Physics. 2016;94(14):144302.
doi:10.1103/PhysRevB.94.144302 .
Gligorić, Goran, Maluckov, Aleksandra, Hadžievski, Ljupčo, Flach, Sergej, Malomed, Boris A., "Nonlinear localized flat-band modes with spin-orbit coupling" in Physical Review B: Condensed Matter and Materials Physics, 94, no. 14 (2016):144302,
https://doi.org/10.1103/PhysRevB.94.144302 . .
25
23
26

Nonlinear localized flat-band modes with spin-orbit coupling

Gligorić, Goran; Maluckov, Aleksandra; Hadžievski, Ljupčo; Flach, Sergej; Malomed, Boris A.

(2016)

TY  - JOUR
AU  - Gligorić, Goran
AU  - Maluckov, Aleksandra
AU  - Hadžievski, Ljupčo
AU  - Flach, Sergej
AU  - Malomed, Boris A.
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1287
AB  - We report the coexistence and properties of stable compact localized states (CLSs) and discrete solitons (DSs) for nonlinear spinor waves on a flat-band network with spin-orbit coupling (SOC). The system can be implemented by means of a binary Bose-Einstein condensate loaded in the corresponding optical lattice. In the linear limit, the SOC opens a minigap between flat and dispersive bands in the systems band-gap structure, and preserves the existence of CLSs at the flat-band frequency, simultaneously lowering their symmetry. Adding on-site cubic nonlinearity, the CLSs persist and remain available in an exact analytical form, with frequencies that are smoothly tuned into the minigap. Inside of the minigap, the CLS and DS families are stable in narrow areas adjacent to the FB. Deep inside the semi-infinite gap, both the CLSs and DSs are stable too.
T2  - Physical Review B: Condensed Matter and Materials Physics
T1  - Nonlinear localized flat-band modes with spin-orbit coupling
VL  - 94
IS  - 14
SP  - 144302
DO  - 10.1103/PhysRevB.94.144302
ER  - 
@article{
author = "Gligorić, Goran and Maluckov, Aleksandra and Hadžievski, Ljupčo and Flach, Sergej and Malomed, Boris A.",
year = "2016",
abstract = "We report the coexistence and properties of stable compact localized states (CLSs) and discrete solitons (DSs) for nonlinear spinor waves on a flat-band network with spin-orbit coupling (SOC). The system can be implemented by means of a binary Bose-Einstein condensate loaded in the corresponding optical lattice. In the linear limit, the SOC opens a minigap between flat and dispersive bands in the systems band-gap structure, and preserves the existence of CLSs at the flat-band frequency, simultaneously lowering their symmetry. Adding on-site cubic nonlinearity, the CLSs persist and remain available in an exact analytical form, with frequencies that are smoothly tuned into the minigap. Inside of the minigap, the CLS and DS families are stable in narrow areas adjacent to the FB. Deep inside the semi-infinite gap, both the CLSs and DSs are stable too.",
journal = "Physical Review B: Condensed Matter and Materials Physics",
title = "Nonlinear localized flat-band modes with spin-orbit coupling",
volume = "94",
number = "14",
pages = "144302",
doi = "10.1103/PhysRevB.94.144302"
}
Gligorić, G., Maluckov, A., Hadžievski, L., Flach, S.,& Malomed, B. A.. (2016). Nonlinear localized flat-band modes with spin-orbit coupling. in Physical Review B: Condensed Matter and Materials Physics, 94(14), 144302.
https://doi.org/10.1103/PhysRevB.94.144302
Gligorić G, Maluckov A, Hadžievski L, Flach S, Malomed BA. Nonlinear localized flat-band modes with spin-orbit coupling. in Physical Review B: Condensed Matter and Materials Physics. 2016;94(14):144302.
doi:10.1103/PhysRevB.94.144302 .
Gligorić, Goran, Maluckov, Aleksandra, Hadžievski, Ljupčo, Flach, Sergej, Malomed, Boris A., "Nonlinear localized flat-band modes with spin-orbit coupling" in Physical Review B: Condensed Matter and Materials Physics, 94, no. 14 (2016):144302,
https://doi.org/10.1103/PhysRevB.94.144302 . .
25
23
26