U.S. DOE-BES, Division of Materials Science and Engineering [DE-SC0012704]

Link to this page

U.S. DOE-BES, Division of Materials Science and Engineering [DE-SC0012704]

Authors

Publications

Fe0.36(4)Pd 0.64(4)Se 2 : Magnetic Spin-Glass Polymorph of FeSe2 and PdSe2 Stable at Ambient Pressure

Tian, Jianjun; Ivanovski, Valentin N.; Szalda, David; Lei, Hechang; Wang, Aifeng; Liu, Yu; Zhang, Weifeng; Koteski, Vasil J.; Petrović, Čedomir

(2019)

TY  - JOUR
AU  - Tian, Jianjun
AU  - Ivanovski, Valentin N.
AU  - Szalda, David
AU  - Lei, Hechang
AU  - Wang, Aifeng
AU  - Liu, Yu
AU  - Zhang, Weifeng
AU  - Koteski, Vasil J.
AU  - Petrović, Čedomir
PY  - 2019
UR  - http://pubs.acs.org/doi/10.1021/acs.inorgchem.8b03089
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8082
AB  - We report the synthesis and characterization of Fe 0.36(4) Pd 0.64(4) Se 2 with a pyrite-type structure. Fe 0.36(4) Pd 0.64(4) Se 2 was synthesized using ambient pressure flux crystal growth methods even though the space group Pa3 is high-pressure polymorph for both FeSe 2 and PdSe 2 . Combined experimental and theoretical analysis reveal magnetic spin glass state below 23 K in 1000 Oe that stems from random Fe/Pd occupancies on the same atomic site. The frozen-in magnetic randomness contributes significantly to electronic transport. Electronic structure calculations confirm dominant d-electron character of hybridized bands and large density of states near the Fermi level. Flux-grown single crystal alloys in Pd-Fe-Se atomic system therefore open new pathway for exploring different polymorphs in crystal structures and their novel properties. © 2019 American Chemical Society.
T2  - Inorganic Chemistry
T1  - Fe0.36(4)Pd 0.64(4)Se 2 : Magnetic Spin-Glass Polymorph of FeSe2 and PdSe2 Stable at Ambient Pressure
VL  - 58
IS  - 5
SP  - 3107
EP  - 3114
DO  - 10.1021/acs.inorgchem.8b03089
ER  - 
@article{
author = "Tian, Jianjun and Ivanovski, Valentin N. and Szalda, David and Lei, Hechang and Wang, Aifeng and Liu, Yu and Zhang, Weifeng and Koteski, Vasil J. and Petrović, Čedomir",
year = "2019",
abstract = "We report the synthesis and characterization of Fe 0.36(4) Pd 0.64(4) Se 2 with a pyrite-type structure. Fe 0.36(4) Pd 0.64(4) Se 2 was synthesized using ambient pressure flux crystal growth methods even though the space group Pa3 is high-pressure polymorph for both FeSe 2 and PdSe 2 . Combined experimental and theoretical analysis reveal magnetic spin glass state below 23 K in 1000 Oe that stems from random Fe/Pd occupancies on the same atomic site. The frozen-in magnetic randomness contributes significantly to electronic transport. Electronic structure calculations confirm dominant d-electron character of hybridized bands and large density of states near the Fermi level. Flux-grown single crystal alloys in Pd-Fe-Se atomic system therefore open new pathway for exploring different polymorphs in crystal structures and their novel properties. © 2019 American Chemical Society.",
journal = "Inorganic Chemistry",
title = "Fe0.36(4)Pd 0.64(4)Se 2 : Magnetic Spin-Glass Polymorph of FeSe2 and PdSe2 Stable at Ambient Pressure",
volume = "58",
number = "5",
pages = "3107-3114",
doi = "10.1021/acs.inorgchem.8b03089"
}
Tian, J., Ivanovski, V. N., Szalda, D., Lei, H., Wang, A., Liu, Y., Zhang, W., Koteski, V. J.,& Petrović, Č.. (2019). Fe0.36(4)Pd 0.64(4)Se 2 : Magnetic Spin-Glass Polymorph of FeSe2 and PdSe2 Stable at Ambient Pressure. in Inorganic Chemistry, 58(5), 3107-3114.
https://doi.org/10.1021/acs.inorgchem.8b03089
Tian J, Ivanovski VN, Szalda D, Lei H, Wang A, Liu Y, Zhang W, Koteski VJ, Petrović Č. Fe0.36(4)Pd 0.64(4)Se 2 : Magnetic Spin-Glass Polymorph of FeSe2 and PdSe2 Stable at Ambient Pressure. in Inorganic Chemistry. 2019;58(5):3107-3114.
doi:10.1021/acs.inorgchem.8b03089 .
Tian, Jianjun, Ivanovski, Valentin N., Szalda, David, Lei, Hechang, Wang, Aifeng, Liu, Yu, Zhang, Weifeng, Koteski, Vasil J., Petrović, Čedomir, "Fe0.36(4)Pd 0.64(4)Se 2 : Magnetic Spin-Glass Polymorph of FeSe2 and PdSe2 Stable at Ambient Pressure" in Inorganic Chemistry, 58, no. 5 (2019):3107-3114,
https://doi.org/10.1021/acs.inorgchem.8b03089 . .
4
2
4

Critical behavior of the van derWaals bonded ferromagnet Fe3-xGeTe2

Liu, Yu; Ivanovski, Valentin N.; Petrović, Čedomir

(2017)

TY  - JOUR
AU  - Liu, Yu
AU  - Ivanovski, Valentin N.
AU  - Petrović, Čedomir
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1795
AB  - The critical properties of the single-crystalline van der Waals bonded ferromagnet Fe3-xGeTe2 were investigated by bulk dc magnetization around the paramagnetic to ferromagnetic (FM) phase transition. The Fe3-xGeTe2 single crystals grown by self-flux method with Fe deficiency x approximate to 0.36 exhibit bulk FM ordering below T-c = 152 K. The Mossbauer spectroscopy was used to provide information on defects and local atomic environment in such crystals. Critical exponents beta = 0.372(4) with a critical temperature T-c = 151.25(5) K and gamma = 1.265(15) with T-c = 151.17(12) K are obtained by the Kouvel-Fisher method, whereas d = 4.50(1) is obtained by a critical isotherm analysis at T-c = 151 K. These critical exponents obey theWidom scaling relation delta = 1 + gamma/beta, indicating self-consistency of the obtained values. With these critical exponents the isothermM(H) curves below and above the critical temperatures collapse into two independent universal branches, obeying the single scaling equation m = f +/- (h), where m and h are renormalized magnetization and field, respectively. The exponents determined in this study are close to those calculated from the results of the renormalization group approach for a heuristic model of three-dimensional Heisenberg (d = 3, n = 3) spins coupled with the attractive long-range interactions between spins that decay as J (r) approximate to r(-(3+ sigma)) with sigma = 1.89.
T2  - Physical Review B: Condensed Matter and Materials Physics
T1  - Critical behavior of the van derWaals bonded ferromagnet Fe3-xGeTe2
VL  - 96
IS  - 14
DO  - 10.1103/PhysRevB.96.144429
ER  - 
@article{
author = "Liu, Yu and Ivanovski, Valentin N. and Petrović, Čedomir",
year = "2017",
abstract = "The critical properties of the single-crystalline van der Waals bonded ferromagnet Fe3-xGeTe2 were investigated by bulk dc magnetization around the paramagnetic to ferromagnetic (FM) phase transition. The Fe3-xGeTe2 single crystals grown by self-flux method with Fe deficiency x approximate to 0.36 exhibit bulk FM ordering below T-c = 152 K. The Mossbauer spectroscopy was used to provide information on defects and local atomic environment in such crystals. Critical exponents beta = 0.372(4) with a critical temperature T-c = 151.25(5) K and gamma = 1.265(15) with T-c = 151.17(12) K are obtained by the Kouvel-Fisher method, whereas d = 4.50(1) is obtained by a critical isotherm analysis at T-c = 151 K. These critical exponents obey theWidom scaling relation delta = 1 + gamma/beta, indicating self-consistency of the obtained values. With these critical exponents the isothermM(H) curves below and above the critical temperatures collapse into two independent universal branches, obeying the single scaling equation m = f +/- (h), where m and h are renormalized magnetization and field, respectively. The exponents determined in this study are close to those calculated from the results of the renormalization group approach for a heuristic model of three-dimensional Heisenberg (d = 3, n = 3) spins coupled with the attractive long-range interactions between spins that decay as J (r) approximate to r(-(3+ sigma)) with sigma = 1.89.",
journal = "Physical Review B: Condensed Matter and Materials Physics",
title = "Critical behavior of the van derWaals bonded ferromagnet Fe3-xGeTe2",
volume = "96",
number = "14",
doi = "10.1103/PhysRevB.96.144429"
}
Liu, Y., Ivanovski, V. N.,& Petrović, Č.. (2017). Critical behavior of the van derWaals bonded ferromagnet Fe3-xGeTe2. in Physical Review B: Condensed Matter and Materials Physics, 96(14).
https://doi.org/10.1103/PhysRevB.96.144429
Liu Y, Ivanovski VN, Petrović Č. Critical behavior of the van derWaals bonded ferromagnet Fe3-xGeTe2. in Physical Review B: Condensed Matter and Materials Physics. 2017;96(14).
doi:10.1103/PhysRevB.96.144429 .
Liu, Yu, Ivanovski, Valentin N., Petrović, Čedomir, "Critical behavior of the van derWaals bonded ferromagnet Fe3-xGeTe2" in Physical Review B: Condensed Matter and Materials Physics, 96, no. 14 (2017),
https://doi.org/10.1103/PhysRevB.96.144429 . .
1
68
45
61