Ministry of Education, Youth and Sports of the Czech Republic [Project no. LM2018124]

Link to this page

Ministry of Education, Youth and Sports of the Czech Republic [Project no. LM2018124]

Authors

Publications

Toxicity of Silver Nanoparticles Supported by Surface-Modified Zirconium Dioxide with Dihydroquercetin

Sredojević, Dušan; Lazić, Vesna M.; Pirković, Andrea; Periša, Jovana; Murafa, Natalija; Spremo-Potparević, Biljana; Živković, Lada; Topalović, Dijana; Zarubica, Aleksandra; Jovanović Krivokuća, Milica; Nedeljković, Jovan

(2022)

TY  - JOUR
AU  - Sredojević, Dušan
AU  - Lazić, Vesna M.
AU  - Pirković, Andrea
AU  - Periša, Jovana
AU  - Murafa, Natalija
AU  - Spremo-Potparević, Biljana
AU  - Živković, Lada
AU  - Topalović, Dijana
AU  - Zarubica, Aleksandra
AU  - Jovanović Krivokuća, Milica
AU  - Nedeljković, Jovan
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10445
AB  - The antibacterial performance and cytotoxic examination of in situ prepared silver nanoparticles (Ag NPs), on inorganic-organic hybrid nanopowder consisting of zirconium dioxide nanoparticles (ZrO2 NPs) and dihydroquercetin (DHQ), was performed against Gram (−) bacteria Escherichia coli and Gram (+) bacteria Staphylococcus aureus, as well as against human cervical cancer cells HeLa and healthy MRC-5 human cells. The surface modification of ZrO2 NPs, synthesized by the sol-gel method, with DHQ leads to the interfacial charge transfer (ICT) complex formation indicated by the appearance of absorption in the visible spectral range. The prepared samples were thoroughly characterized (TEM, XRD, reflection spectroscopy), and, in addition, the spectroscopic observations are supported by the density functional theory (DFT) calculations using a cluster model. The concentration- and time-dependent antibacterial tests indicated a complete reduction of bacterial species, E. coli and S. aureus, for all investigated concentrations of silver (0.10, 0.25, and 0.50 mg/mL) after 24 h of contact. On the other side, the functionalized ZrO2 NPs with DHQ, before and after deposition of Ag NPs, do not display a significant decrease in the viability of HeLa MRC-5 cells in any of the used concentrations compared to the control.
T2  - Nanomaterials
T1  - Toxicity of Silver Nanoparticles Supported by Surface-Modified Zirconium Dioxide with Dihydroquercetin
VL  - 12
IS  - 18
SP  - 3195
DO  - 10.3390/nano12183195
ER  - 
@article{
author = "Sredojević, Dušan and Lazić, Vesna M. and Pirković, Andrea and Periša, Jovana and Murafa, Natalija and Spremo-Potparević, Biljana and Živković, Lada and Topalović, Dijana and Zarubica, Aleksandra and Jovanović Krivokuća, Milica and Nedeljković, Jovan",
year = "2022",
abstract = "The antibacterial performance and cytotoxic examination of in situ prepared silver nanoparticles (Ag NPs), on inorganic-organic hybrid nanopowder consisting of zirconium dioxide nanoparticles (ZrO2 NPs) and dihydroquercetin (DHQ), was performed against Gram (−) bacteria Escherichia coli and Gram (+) bacteria Staphylococcus aureus, as well as against human cervical cancer cells HeLa and healthy MRC-5 human cells. The surface modification of ZrO2 NPs, synthesized by the sol-gel method, with DHQ leads to the interfacial charge transfer (ICT) complex formation indicated by the appearance of absorption in the visible spectral range. The prepared samples were thoroughly characterized (TEM, XRD, reflection spectroscopy), and, in addition, the spectroscopic observations are supported by the density functional theory (DFT) calculations using a cluster model. The concentration- and time-dependent antibacterial tests indicated a complete reduction of bacterial species, E. coli and S. aureus, for all investigated concentrations of silver (0.10, 0.25, and 0.50 mg/mL) after 24 h of contact. On the other side, the functionalized ZrO2 NPs with DHQ, before and after deposition of Ag NPs, do not display a significant decrease in the viability of HeLa MRC-5 cells in any of the used concentrations compared to the control.",
journal = "Nanomaterials",
title = "Toxicity of Silver Nanoparticles Supported by Surface-Modified Zirconium Dioxide with Dihydroquercetin",
volume = "12",
number = "18",
pages = "3195",
doi = "10.3390/nano12183195"
}
Sredojević, D., Lazić, V. M., Pirković, A., Periša, J., Murafa, N., Spremo-Potparević, B., Živković, L., Topalović, D., Zarubica, A., Jovanović Krivokuća, M.,& Nedeljković, J.. (2022). Toxicity of Silver Nanoparticles Supported by Surface-Modified Zirconium Dioxide with Dihydroquercetin. in Nanomaterials, 12(18), 3195.
https://doi.org/10.3390/nano12183195
Sredojević D, Lazić VM, Pirković A, Periša J, Murafa N, Spremo-Potparević B, Živković L, Topalović D, Zarubica A, Jovanović Krivokuća M, Nedeljković J. Toxicity of Silver Nanoparticles Supported by Surface-Modified Zirconium Dioxide with Dihydroquercetin. in Nanomaterials. 2022;12(18):3195.
doi:10.3390/nano12183195 .
Sredojević, Dušan, Lazić, Vesna M., Pirković, Andrea, Periša, Jovana, Murafa, Natalija, Spremo-Potparević, Biljana, Živković, Lada, Topalović, Dijana, Zarubica, Aleksandra, Jovanović Krivokuća, Milica, Nedeljković, Jovan, "Toxicity of Silver Nanoparticles Supported by Surface-Modified Zirconium Dioxide with Dihydroquercetin" in Nanomaterials, 12, no. 18 (2022):3195,
https://doi.org/10.3390/nano12183195 . .
2
2