NATO SfP Grant [984068], MPNS COST ACTION [MP1204-TERA-MIR], BMBS COST Action [BM1205]

Link to this page

NATO SfP Grant [984068], MPNS COST ACTION [MP1204-TERA-MIR], BMBS COST Action [BM1205]

Authors

Publications

Magnetic field effects on THz quantum cascade laser: A comparative analysis of three and four quantum well based active region design

Daničić, Aleksandar; Radovanović, Jelena V.; Milanović, Vitomir B.; Indjin, Dragan; Ikonić, Zoran

(Elsevier, 2016)

TY  - JOUR
AU  - Daničić, Aleksandar
AU  - Radovanović, Jelena V.
AU  - Milanović, Vitomir B.
AU  - Indjin, Dragan
AU  - Ikonić, Zoran
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1102
AB  - We consider the influence of additional carrier confinement, achieved by application of strong perpendicular magnetic field, on inter Landau levels electron relaxation rates and the optical gain, of two different GaAs quantum cascade laser structures operating in the terahertz spectral range. Breaking of the in-plane energy dispersion and the formation of discrete energy levels is an efficient mechanism for eventual quenching of optical phonon emission and obtaining very long electronic lifetime in the relevant laser state. We employ our detailed model for calculating the electron relaxation rates (due to interface roughness and electron-longitudinal optical phonon scattering), and solve a full set of rate equations to evaluate the carrier distribution over Landau levels. The numerical simulations are performed for three- and four-well (per period) based structures that operate at 3.9 THz and 1.9 THz, respectively, both implemented in GaAs/Al0.15Ga0.85As. Numerical results are presented for magnetic field values from 1.5 T up to 20 T, while the band nonparabolicity is accounted for. (C) 2016 Elsevier B.V. All rights reserved.
PB  - Elsevier
T2  - Physica E: Low-dimensional Systems and Nanostructures
T1  - Magnetic field effects on THz quantum cascade laser: A comparative analysis of three and four quantum well based active region design
VL  - 81
SP  - 275
EP  - 280
DO  - 10.1016/j.physe.2016.03.019
ER  - 
@article{
author = "Daničić, Aleksandar and Radovanović, Jelena V. and Milanović, Vitomir B. and Indjin, Dragan and Ikonić, Zoran",
year = "2016",
abstract = "We consider the influence of additional carrier confinement, achieved by application of strong perpendicular magnetic field, on inter Landau levels electron relaxation rates and the optical gain, of two different GaAs quantum cascade laser structures operating in the terahertz spectral range. Breaking of the in-plane energy dispersion and the formation of discrete energy levels is an efficient mechanism for eventual quenching of optical phonon emission and obtaining very long electronic lifetime in the relevant laser state. We employ our detailed model for calculating the electron relaxation rates (due to interface roughness and electron-longitudinal optical phonon scattering), and solve a full set of rate equations to evaluate the carrier distribution over Landau levels. The numerical simulations are performed for three- and four-well (per period) based structures that operate at 3.9 THz and 1.9 THz, respectively, both implemented in GaAs/Al0.15Ga0.85As. Numerical results are presented for magnetic field values from 1.5 T up to 20 T, while the band nonparabolicity is accounted for. (C) 2016 Elsevier B.V. All rights reserved.",
publisher = "Elsevier",
journal = "Physica E: Low-dimensional Systems and Nanostructures",
title = "Magnetic field effects on THz quantum cascade laser: A comparative analysis of three and four quantum well based active region design",
volume = "81",
pages = "275-280",
doi = "10.1016/j.physe.2016.03.019"
}
Daničić, A., Radovanović, J. V., Milanović, V. B., Indjin, D.,& Ikonić, Z.. (2016). Magnetic field effects on THz quantum cascade laser: A comparative analysis of three and four quantum well based active region design. in Physica E: Low-dimensional Systems and Nanostructures
Elsevier., 81, 275-280.
https://doi.org/10.1016/j.physe.2016.03.019
Daničić A, Radovanović JV, Milanović VB, Indjin D, Ikonić Z. Magnetic field effects on THz quantum cascade laser: A comparative analysis of three and four quantum well based active region design. in Physica E: Low-dimensional Systems and Nanostructures. 2016;81:275-280.
doi:10.1016/j.physe.2016.03.019 .
Daničić, Aleksandar, Radovanović, Jelena V., Milanović, Vitomir B., Indjin, Dragan, Ikonić, Zoran, "Magnetic field effects on THz quantum cascade laser: A comparative analysis of three and four quantum well based active region design" in Physica E: Low-dimensional Systems and Nanostructures, 81 (2016):275-280,
https://doi.org/10.1016/j.physe.2016.03.019 . .
1
5
5
5