Study of structure-function relationships in the plant cell wall and modifications of the wall structure by enzyme engineering

Link to this page

info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/173017/RS//

Study of structure-function relationships in the plant cell wall and modifications of the wall structure by enzyme engineering (en)
Испитивања односа структура-функција у ћелијском зиду биљака и измене структуре зида ензимским инжењерингом (sr)
Ispitivanja odnosa struktura-funkcija u ćelijskom zidu biljaka i izmene strukture zida enzimskim inženjeringom (sr_RS)
Authors

Publications

Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents

Milojkov, Dušan V.; Radosavljević-Mihajlović, Ana S.; Stanić, Vojislav; Nastasijević, Branislav J.; Radotić, Ksenija; Janković-Častvan, Ivona; Živković-Radovanović, Vukosava

(2023)

TY  - JOUR
AU  - Milojkov, Dušan V.
AU  - Radosavljević-Mihajlović, Ana S.
AU  - Stanić, Vojislav
AU  - Nastasijević, Branislav J.
AU  - Radotić, Ksenija
AU  - Janković-Častvan, Ivona
AU  - Živković-Radovanović, Vukosava
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10612
AB  - Nanomaterials based on metal–doped fluorapatite (FAP) have attracted considerable interest as potential next–generation antimicrobial agents. In this study, Cu2+–doped FAP nanocrystals have been successfully synthesized by a neutralization method at room temperature. Their structural, optical, antimicrobial, and hemcompatible properties have been investigated. XRD, FTIR, FESEM, and N2 adsorption–desorption studies indicate the formation of single–phase FAP mesoporous nanopowders, composed of rod–like particles. TEM images confirmed the formation of nanorodes with a length of 60 nm and a width of about 18 nm. Rietveld analysis shows that the Cu2+ ions preferentially substitute Ca2 (6 h) sites in the hexagonal fluorapatite crystal structure. Fluorescence spectroscopy accompanied by MCR–ALS method confirms substitution of Cu2+ ions in FAP crystal lattice with extracting additional d–d band transition at green color from FAP broadband self–activated luminescence in violet–blue color. Antimicrobial studies conducted on Staphylococcus aureus, Escherichia coli and Micrococcus lysodeikticus showed that FAP nanopowder with the highest Cu2+ content have strong bacteriostatic action on Staphylococcus aureus bacterial strain in mediums containing nutrition matters. In addition, this sample in comparison to pure FAP achieved a high percentage of relative reduction of bacterial population for all three species, being >90% in most cases. Fungistatic action is noticed too, throwgh the slowing down mycelium growth of fungus Aspergillus niger, Aspergillus flavus and Penicillium roqueforti and reduction of sporulation of Aspergillus niger species. Cu2+–doped FAP nanocrystals shows a synergistic antimicrobial effect with Cu2+ and F− ions. Concerning the potential biomedical applications, the hemolysis ratios of the Cu2+–doped FAP samples were below 5%. The obtained results pointed out the possible use of the synthesized nanocrystals as broad–spectrum antimicrobial agents for various biomedical and health care preparations.
T2  - Journal of Photochemistry and Photobiology B: Biology
T1  - Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents
VL  - 239
SP  - 112649
DO  - 10.1016/j.jphotobiol.2023.112649
ER  - 
@article{
author = "Milojkov, Dušan V. and Radosavljević-Mihajlović, Ana S. and Stanić, Vojislav and Nastasijević, Branislav J. and Radotić, Ksenija and Janković-Častvan, Ivona and Živković-Radovanović, Vukosava",
year = "2023",
abstract = "Nanomaterials based on metal–doped fluorapatite (FAP) have attracted considerable interest as potential next–generation antimicrobial agents. In this study, Cu2+–doped FAP nanocrystals have been successfully synthesized by a neutralization method at room temperature. Their structural, optical, antimicrobial, and hemcompatible properties have been investigated. XRD, FTIR, FESEM, and N2 adsorption–desorption studies indicate the formation of single–phase FAP mesoporous nanopowders, composed of rod–like particles. TEM images confirmed the formation of nanorodes with a length of 60 nm and a width of about 18 nm. Rietveld analysis shows that the Cu2+ ions preferentially substitute Ca2 (6 h) sites in the hexagonal fluorapatite crystal structure. Fluorescence spectroscopy accompanied by MCR–ALS method confirms substitution of Cu2+ ions in FAP crystal lattice with extracting additional d–d band transition at green color from FAP broadband self–activated luminescence in violet–blue color. Antimicrobial studies conducted on Staphylococcus aureus, Escherichia coli and Micrococcus lysodeikticus showed that FAP nanopowder with the highest Cu2+ content have strong bacteriostatic action on Staphylococcus aureus bacterial strain in mediums containing nutrition matters. In addition, this sample in comparison to pure FAP achieved a high percentage of relative reduction of bacterial population for all three species, being >90% in most cases. Fungistatic action is noticed too, throwgh the slowing down mycelium growth of fungus Aspergillus niger, Aspergillus flavus and Penicillium roqueforti and reduction of sporulation of Aspergillus niger species. Cu2+–doped FAP nanocrystals shows a synergistic antimicrobial effect with Cu2+ and F− ions. Concerning the potential biomedical applications, the hemolysis ratios of the Cu2+–doped FAP samples were below 5%. The obtained results pointed out the possible use of the synthesized nanocrystals as broad–spectrum antimicrobial agents for various biomedical and health care preparations.",
journal = "Journal of Photochemistry and Photobiology B: Biology",
title = "Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents",
volume = "239",
pages = "112649",
doi = "10.1016/j.jphotobiol.2023.112649"
}
Milojkov, D. V., Radosavljević-Mihajlović, A. S., Stanić, V., Nastasijević, B. J., Radotić, K., Janković-Častvan, I.,& Živković-Radovanović, V.. (2023). Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents. in Journal of Photochemistry and Photobiology B: Biology, 239, 112649.
https://doi.org/10.1016/j.jphotobiol.2023.112649
Milojkov DV, Radosavljević-Mihajlović AS, Stanić V, Nastasijević BJ, Radotić K, Janković-Častvan I, Živković-Radovanović V. Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents. in Journal of Photochemistry and Photobiology B: Biology. 2023;239:112649.
doi:10.1016/j.jphotobiol.2023.112649 .
Milojkov, Dušan V., Radosavljević-Mihajlović, Ana S., Stanić, Vojislav, Nastasijević, Branislav J., Radotić, Ksenija, Janković-Častvan, Ivona, Živković-Radovanović, Vukosava, "Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents" in Journal of Photochemistry and Photobiology B: Biology, 239 (2023):112649,
https://doi.org/10.1016/j.jphotobiol.2023.112649 . .
2
1

Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents

Milojkov, Dušan V.; Silvestre, Oscar F.; Stanić, Vojislav; Janjić, Goran V.; Mutavdžić, Dragosav R.; Milanović, Marija; Nieder, Jana B.

(2020)

TY  - JOUR
AU  - Milojkov, Dušan V.
AU  - Silvestre, Oscar F.
AU  - Stanić, Vojislav
AU  - Janjić, Goran V.
AU  - Mutavdžić, Dragosav R.
AU  - Milanović, Marija
AU  - Nieder, Jana B.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8529
AB  - Fluorapatite doped with rare-earth elements has a wide-range of biomedical applications. Here, a new type of fluorapatite nanocrystals doped with praseodymium (FAP-Pr) with excitation-emission profiles in visible part of the spectrum is fabricated. Energy levels of Pr3+ activator ion contain metastable multiplet states that offer the possibility of efficient multicolor emission lines in FAP nanocrystals. Three types of FAP-Pr nanocrystals with 0.1%, 0.5% and 1% atomic percent of Pr3+ (along with the undoped FAP control sample) are studied. Their novel chemical production method is described, the FAP-Pr nanocrystals structure, biocompatibility and the suitability for cell imaging are analyzed. Physicochemical characterization confirms crystals down to nanometer size. In addition, quantum-chemical calculation predicts that Pr3+ ions are incorporated into the FAP crystal lattice at Ca2 (6 h) sites. In vitro viability results shows that FAP-Pr nanocrystals are nontoxic to live cells. Additionally, the cell uptake of the FAP-Pr nanocrystals is studied using fluorescence-based widefield and confocal microscopy. The nanocrystals show characteristic green emission at 545 nm (3P0→3H5 transition of Pr3+ ion) and orange emission at 600 nm (1D2→3H4), which we use to discriminate from cell autofluorescence background. Orthogonal projections across 3D confocal stacks show that the nanocrystals are able to enter the cells positioning themselves within the cytoplasm. Overall, the new FAP-Pr nanocrystals are biocompatible and of the tested types, the 0.5% Pr3+ doped nanocrystals show the highest promise as a tracking nanoparticle probe for bioimaging applications. © 2019
T2  - Journal of Luminescence
T1  - Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents
VL  - 217
SP  - 116757
DO  - 10.1016/j.jlumin.2019.116757
ER  - 
@article{
author = "Milojkov, Dušan V. and Silvestre, Oscar F. and Stanić, Vojislav and Janjić, Goran V. and Mutavdžić, Dragosav R. and Milanović, Marija and Nieder, Jana B.",
year = "2020",
abstract = "Fluorapatite doped with rare-earth elements has a wide-range of biomedical applications. Here, a new type of fluorapatite nanocrystals doped with praseodymium (FAP-Pr) with excitation-emission profiles in visible part of the spectrum is fabricated. Energy levels of Pr3+ activator ion contain metastable multiplet states that offer the possibility of efficient multicolor emission lines in FAP nanocrystals. Three types of FAP-Pr nanocrystals with 0.1%, 0.5% and 1% atomic percent of Pr3+ (along with the undoped FAP control sample) are studied. Their novel chemical production method is described, the FAP-Pr nanocrystals structure, biocompatibility and the suitability for cell imaging are analyzed. Physicochemical characterization confirms crystals down to nanometer size. In addition, quantum-chemical calculation predicts that Pr3+ ions are incorporated into the FAP crystal lattice at Ca2 (6 h) sites. In vitro viability results shows that FAP-Pr nanocrystals are nontoxic to live cells. Additionally, the cell uptake of the FAP-Pr nanocrystals is studied using fluorescence-based widefield and confocal microscopy. The nanocrystals show characteristic green emission at 545 nm (3P0→3H5 transition of Pr3+ ion) and orange emission at 600 nm (1D2→3H4), which we use to discriminate from cell autofluorescence background. Orthogonal projections across 3D confocal stacks show that the nanocrystals are able to enter the cells positioning themselves within the cytoplasm. Overall, the new FAP-Pr nanocrystals are biocompatible and of the tested types, the 0.5% Pr3+ doped nanocrystals show the highest promise as a tracking nanoparticle probe for bioimaging applications. © 2019",
journal = "Journal of Luminescence",
title = "Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents",
volume = "217",
pages = "116757",
doi = "10.1016/j.jlumin.2019.116757"
}
Milojkov, D. V., Silvestre, O. F., Stanić, V., Janjić, G. V., Mutavdžić, D. R., Milanović, M.,& Nieder, J. B.. (2020). Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents. in Journal of Luminescence, 217, 116757.
https://doi.org/10.1016/j.jlumin.2019.116757
Milojkov DV, Silvestre OF, Stanić V, Janjić GV, Mutavdžić DR, Milanović M, Nieder JB. Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents. in Journal of Luminescence. 2020;217:116757.
doi:10.1016/j.jlumin.2019.116757 .
Milojkov, Dušan V., Silvestre, Oscar F., Stanić, Vojislav, Janjić, Goran V., Mutavdžić, Dragosav R., Milanović, Marija, Nieder, Jana B., "Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents" in Journal of Luminescence, 217 (2020):116757,
https://doi.org/10.1016/j.jlumin.2019.116757 . .
23
8
20

Ferrous iron binding to epinephrine promotes the oxidation of iron and impedes activation of adrenergic receptors.

Korać Jačić, Jelena; Nikolić, Ljiljana; Stanković, Dalibor M.; Opačić, Miloš; Dimitrijević, Milena S.; Savić, Danijela; Grgurić-Šipka, Sanja; Spasojević, Ivan; Bogdanović-Pristov, Jelena

(2020)

TY  - JOUR
AU  - Korać Jačić, Jelena
AU  - Nikolić, Ljiljana
AU  - Stanković, Dalibor M.
AU  - Opačić, Miloš
AU  - Dimitrijević, Milena S.
AU  - Savić, Danijela
AU  - Grgurić-Šipka, Sanja
AU  - Spasojević, Ivan
AU  - Bogdanović-Pristov, Jelena
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8801
AB  - Upon release in response to stress, epinephrine (Epi) may interact with labile iron pool in human plasma with potentially important (patho)physiological consequences. We have shown that Epi and Fe3+ build stable 1:1 high-spin bidentate complex at physiological pH, and that Epi does not undergo degradation in the presence of iron. However, the interactions of Epi with the more soluble Fe2+, and the impact of iron on biological activity of Epi are still not known. Herein we showed that Epi and Fe2+ build colorless complex which is stable under anaerobic conditions. In the presence of O2, Epi promoted the oxidation of Fe2+ and the formation of Epi-Fe3+ complex. Cyclic voltammetry showed that mid-point potential of Epi-Fe2+ complex is very low (-582 mV vs. standard hydrogen electrode), which explains catalyzed oxidation of Fe2+. Next, we examined the impact of iron binding on biological performance of Epi using patch clamping in cell culture with constitutive expression of adrenergic receptors. Epi alone evoked an increase of outward currents, whereas Epi in the complex with Fe3+ did not. This implies that the binding of Epi to adrenergic receptors and their activation is prevented by the formation of complex with iron. Pro-oxidative activity of Epi-Fe2+ complex may represent a link between chronic stress and cardiovascular problems. On the other hand, labile iron could serve as a modulator of biological activity of ligands. Such interactions may be important in human pathologies that are related to iron overload or deficiency.
T2  - Free Radical Biology and Medicine
T1  - Ferrous iron binding to epinephrine promotes the oxidation of iron and impedes activation of adrenergic receptors.
VL  - 148
SP  - 123
EP  - 127
DO  - 10.1016/j.freeradbiomed.2020.01.001
ER  - 
@article{
author = "Korać Jačić, Jelena and Nikolić, Ljiljana and Stanković, Dalibor M. and Opačić, Miloš and Dimitrijević, Milena S. and Savić, Danijela and Grgurić-Šipka, Sanja and Spasojević, Ivan and Bogdanović-Pristov, Jelena",
year = "2020",
abstract = "Upon release in response to stress, epinephrine (Epi) may interact with labile iron pool in human plasma with potentially important (patho)physiological consequences. We have shown that Epi and Fe3+ build stable 1:1 high-spin bidentate complex at physiological pH, and that Epi does not undergo degradation in the presence of iron. However, the interactions of Epi with the more soluble Fe2+, and the impact of iron on biological activity of Epi are still not known. Herein we showed that Epi and Fe2+ build colorless complex which is stable under anaerobic conditions. In the presence of O2, Epi promoted the oxidation of Fe2+ and the formation of Epi-Fe3+ complex. Cyclic voltammetry showed that mid-point potential of Epi-Fe2+ complex is very low (-582 mV vs. standard hydrogen electrode), which explains catalyzed oxidation of Fe2+. Next, we examined the impact of iron binding on biological performance of Epi using patch clamping in cell culture with constitutive expression of adrenergic receptors. Epi alone evoked an increase of outward currents, whereas Epi in the complex with Fe3+ did not. This implies that the binding of Epi to adrenergic receptors and their activation is prevented by the formation of complex with iron. Pro-oxidative activity of Epi-Fe2+ complex may represent a link between chronic stress and cardiovascular problems. On the other hand, labile iron could serve as a modulator of biological activity of ligands. Such interactions may be important in human pathologies that are related to iron overload or deficiency.",
journal = "Free Radical Biology and Medicine",
title = "Ferrous iron binding to epinephrine promotes the oxidation of iron and impedes activation of adrenergic receptors.",
volume = "148",
pages = "123-127",
doi = "10.1016/j.freeradbiomed.2020.01.001"
}
Korać Jačić, J., Nikolić, L., Stanković, D. M., Opačić, M., Dimitrijević, M. S., Savić, D., Grgurić-Šipka, S., Spasojević, I.,& Bogdanović-Pristov, J.. (2020). Ferrous iron binding to epinephrine promotes the oxidation of iron and impedes activation of adrenergic receptors.. in Free Radical Biology and Medicine, 148, 123-127.
https://doi.org/10.1016/j.freeradbiomed.2020.01.001
Korać Jačić J, Nikolić L, Stanković DM, Opačić M, Dimitrijević MS, Savić D, Grgurić-Šipka S, Spasojević I, Bogdanović-Pristov J. Ferrous iron binding to epinephrine promotes the oxidation of iron and impedes activation of adrenergic receptors.. in Free Radical Biology and Medicine. 2020;148:123-127.
doi:10.1016/j.freeradbiomed.2020.01.001 .
Korać Jačić, Jelena, Nikolić, Ljiljana, Stanković, Dalibor M., Opačić, Miloš, Dimitrijević, Milena S., Savić, Danijela, Grgurić-Šipka, Sanja, Spasojević, Ivan, Bogdanović-Pristov, Jelena, "Ferrous iron binding to epinephrine promotes the oxidation of iron and impedes activation of adrenergic receptors." in Free Radical Biology and Medicine, 148 (2020):123-127,
https://doi.org/10.1016/j.freeradbiomed.2020.01.001 . .

Effects of Ag + Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method

Milojkov, Dušan V.; Stanić, Vojislav; Dimović, Slavko; Mutavdžić, Dragosav R.; Živković-Radovanović, Vukosava; Janjić, Goran V.; Radotić, Ksenija

(2019)

TY  - JOUR
AU  - Milojkov, Dušan V.
AU  - Stanić, Vojislav
AU  - Dimović, Slavko
AU  - Mutavdžić, Dragosav R.
AU  - Živković-Radovanović, Vukosava
AU  - Janjić, Goran V.
AU  - Radotić, Ksenija
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8629
AB  - In the present study we have analyzed effects of Ag+ ions doping on energetic profiles of nanophosphors materials based on fluorapatite crystal system. The UV radiation absorption and luminescence properties of monophase fluorapatite (FAP) and Ag+ doped fluorapatite (AgFAP) nanomaterials obtained by neutralization method were investigated using the photoluminescence spectrophotometry. The excitation-emission profiles of nanomaterials were analyzed statistically by MCR-ALS method and number of fluorophores was extracted. FAP lattice absorbed light at 350 nm in the UVA part of spectrum, and with increasing concentration of Ag+ ions new absorption maximum appeared at 270 nm in the UVC part. Fluorescence of FAP nanoparticles was in violet region of visible part of the spectrum, with a red shift to the green region when Ag+ was doped in lattice. MCR-ALS analyses of fluorescence spectra confirm formation of two maxima, at 484 and 505 nm, as a consequence of Ag+ ions doping in FAP lattice at Ca1 (4f) sites. The results of quantum chemical calculations showed that an Ag+ ion is stronger bonded to the binding site 1 (-1352:6 kcal/mol) than to the binding site 2 (-1249:0 kcal/mol). Considering that AgFAP1 nanopowder absorbs photons over all part of UV radiation spectrum, this material might be used as potential radiation protective nanomaterial. © 2019 Polish Academy of Sciences. All rights reserved.
T2  - Acta Physica Polonica A
T1  - Effects of Ag + Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method
VL  - 136
IS  - 1
SP  - 86
EP  - 91
DO  - 10.12693/APhysPolA.136.86
ER  - 
@article{
author = "Milojkov, Dušan V. and Stanić, Vojislav and Dimović, Slavko and Mutavdžić, Dragosav R. and Živković-Radovanović, Vukosava and Janjić, Goran V. and Radotić, Ksenija",
year = "2019",
abstract = "In the present study we have analyzed effects of Ag+ ions doping on energetic profiles of nanophosphors materials based on fluorapatite crystal system. The UV radiation absorption and luminescence properties of monophase fluorapatite (FAP) and Ag+ doped fluorapatite (AgFAP) nanomaterials obtained by neutralization method were investigated using the photoluminescence spectrophotometry. The excitation-emission profiles of nanomaterials were analyzed statistically by MCR-ALS method and number of fluorophores was extracted. FAP lattice absorbed light at 350 nm in the UVA part of spectrum, and with increasing concentration of Ag+ ions new absorption maximum appeared at 270 nm in the UVC part. Fluorescence of FAP nanoparticles was in violet region of visible part of the spectrum, with a red shift to the green region when Ag+ was doped in lattice. MCR-ALS analyses of fluorescence spectra confirm formation of two maxima, at 484 and 505 nm, as a consequence of Ag+ ions doping in FAP lattice at Ca1 (4f) sites. The results of quantum chemical calculations showed that an Ag+ ion is stronger bonded to the binding site 1 (-1352:6 kcal/mol) than to the binding site 2 (-1249:0 kcal/mol). Considering that AgFAP1 nanopowder absorbs photons over all part of UV radiation spectrum, this material might be used as potential radiation protective nanomaterial. © 2019 Polish Academy of Sciences. All rights reserved.",
journal = "Acta Physica Polonica A",
title = "Effects of Ag + Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method",
volume = "136",
number = "1",
pages = "86-91",
doi = "10.12693/APhysPolA.136.86"
}
Milojkov, D. V., Stanić, V., Dimović, S., Mutavdžić, D. R., Živković-Radovanović, V., Janjić, G. V.,& Radotić, K.. (2019). Effects of Ag + Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method. in Acta Physica Polonica A, 136(1), 86-91.
https://doi.org/10.12693/APhysPolA.136.86
Milojkov DV, Stanić V, Dimović S, Mutavdžić DR, Živković-Radovanović V, Janjić GV, Radotić K. Effects of Ag + Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method. in Acta Physica Polonica A. 2019;136(1):86-91.
doi:10.12693/APhysPolA.136.86 .
Milojkov, Dušan V., Stanić, Vojislav, Dimović, Slavko, Mutavdžić, Dragosav R., Živković-Radovanović, Vukosava, Janjić, Goran V., Radotić, Ksenija, "Effects of Ag + Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method" in Acta Physica Polonica A, 136, no. 1 (2019):86-91,
https://doi.org/10.12693/APhysPolA.136.86 . .
3
1
3

Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing

Zmejkoski, Danica; Spasojević, Dragica; Orlovska, Irina V.; Kozyrovska, Natalia O.; Soković, Marina; Glamočlija, Jasmina; Dmitrović, Svetlana; Matović, Branko; Tasić, Nikola B.; Maksimović, Vuk M.; Sosnin, Mikhail; Radotić, Ksenija

(2018)

TY  - JOUR
AU  - Zmejkoski, Danica
AU  - Spasojević, Dragica
AU  - Orlovska, Irina V.
AU  - Kozyrovska, Natalia O.
AU  - Soković, Marina
AU  - Glamočlija, Jasmina
AU  - Dmitrović, Svetlana
AU  - Matović, Branko
AU  - Tasić, Nikola B.
AU  - Maksimović, Vuk M.
AU  - Sosnin, Mikhail
AU  - Radotić, Ksenija
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7769
AB  - Lignins and lignin-derived compounds are known to have antibacterial properties. The wound healing agents in the form of dressings produce faster skin repair and decrease pain in patients. In order to create an efficient antimicrobial agent in the form of dressing in the treatment of chronic wounds, a composite hydrogel of bacterial cellulose (BC) and dehydrogenative polymer of coniferyl alcohol (DHP), BC-DHP, was designed. Novel composite showed inhibitory or bactericidal effects against selected pathogenic bacteria, including clinically isolated ones. The highest release rate of DHP was in the first hour, while after 24 h there was still slow release of small amounts of DHP from BC-DHP during 72 h monitoring. High-performance liquid chromatography coupled with mass-spectrometry showed that BC-DHP releases DHP oligomers, which are proposed to be antimicrobially active DHP fractions. Scanning electron microscopy and atomic force microscopy micrographs proved a dose-dependent interaction of DHP with BC, which resulted in a decrease of the pore number and size in the cellulose membrane. The Fourier-transform infrared absorption spectra of the BC-DHP showed that DHP was partly bound to the BC matrix. The swelling and crystallinity degree were dose-dependent. All obtained results confirmed BC-DHP composite as a promising hydrogel for wounds healing.
T2  - International Journal of Biological Macromolecules
T1  - Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing
VL  - 118
SP  - 494
EP  - 503
DO  - 10.1016/j.ijbiomac.2018.06.067
ER  - 
@article{
author = "Zmejkoski, Danica and Spasojević, Dragica and Orlovska, Irina V. and Kozyrovska, Natalia O. and Soković, Marina and Glamočlija, Jasmina and Dmitrović, Svetlana and Matović, Branko and Tasić, Nikola B. and Maksimović, Vuk M. and Sosnin, Mikhail and Radotić, Ksenija",
year = "2018",
abstract = "Lignins and lignin-derived compounds are known to have antibacterial properties. The wound healing agents in the form of dressings produce faster skin repair and decrease pain in patients. In order to create an efficient antimicrobial agent in the form of dressing in the treatment of chronic wounds, a composite hydrogel of bacterial cellulose (BC) and dehydrogenative polymer of coniferyl alcohol (DHP), BC-DHP, was designed. Novel composite showed inhibitory or bactericidal effects against selected pathogenic bacteria, including clinically isolated ones. The highest release rate of DHP was in the first hour, while after 24 h there was still slow release of small amounts of DHP from BC-DHP during 72 h monitoring. High-performance liquid chromatography coupled with mass-spectrometry showed that BC-DHP releases DHP oligomers, which are proposed to be antimicrobially active DHP fractions. Scanning electron microscopy and atomic force microscopy micrographs proved a dose-dependent interaction of DHP with BC, which resulted in a decrease of the pore number and size in the cellulose membrane. The Fourier-transform infrared absorption spectra of the BC-DHP showed that DHP was partly bound to the BC matrix. The swelling and crystallinity degree were dose-dependent. All obtained results confirmed BC-DHP composite as a promising hydrogel for wounds healing.",
journal = "International Journal of Biological Macromolecules",
title = "Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing",
volume = "118",
pages = "494-503",
doi = "10.1016/j.ijbiomac.2018.06.067"
}
Zmejkoski, D., Spasojević, D., Orlovska, I. V., Kozyrovska, N. O., Soković, M., Glamočlija, J., Dmitrović, S., Matović, B., Tasić, N. B., Maksimović, V. M., Sosnin, M.,& Radotić, K.. (2018). Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing. in International Journal of Biological Macromolecules, 118, 494-503.
https://doi.org/10.1016/j.ijbiomac.2018.06.067
Zmejkoski D, Spasojević D, Orlovska IV, Kozyrovska NO, Soković M, Glamočlija J, Dmitrović S, Matović B, Tasić NB, Maksimović VM, Sosnin M, Radotić K. Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing. in International Journal of Biological Macromolecules. 2018;118:494-503.
doi:10.1016/j.ijbiomac.2018.06.067 .
Zmejkoski, Danica, Spasojević, Dragica, Orlovska, Irina V., Kozyrovska, Natalia O., Soković, Marina, Glamočlija, Jasmina, Dmitrović, Svetlana, Matović, Branko, Tasić, Nikola B., Maksimović, Vuk M., Sosnin, Mikhail, Radotić, Ksenija, "Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing" in International Journal of Biological Macromolecules, 118 (2018):494-503,
https://doi.org/10.1016/j.ijbiomac.2018.06.067 . .
6
119
56
116

Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH

Korać, Jelena; Stanković, Dalibor M.; Stanić, Marina; Bajuk-Bogdanović, Danica V.; Žižić, Milan; Bogdanović-Pristov, Jelena; Grgurić-Šipka, Sanja; Popović-Bijelić, Ana D.; Spasojević, Ivan

(2018)

TY  - JOUR
AU  - Korać, Jelena
AU  - Stanković, Dalibor M.
AU  - Stanić, Marina
AU  - Bajuk-Bogdanović, Danica V.
AU  - Žižić, Milan
AU  - Bogdanović-Pristov, Jelena
AU  - Grgurić-Šipka, Sanja
AU  - Popović-Bijelić, Ana D.
AU  - Spasojević, Ivan
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7582
AB  - Coordinate and redox interactions of epinephrine (Epi) with iron at physiological pH are essential for understanding two very different phenomena - the detrimental effects of chronic stress on the cardiovascular system and the cross-linking of catecholamine-rich biopolymers and frameworks. Here we show that Epi and Fe3+ form stable high-spin complexes in the 1:1 or 3:1 stoichiometry, depending on the Epi/Fe3+ concentration ratio (low or high). Oxygen atoms on the catechol ring represent the sites of coordinate bond formation within physiologically relevant bidentate 1:1 complex. Redox properties of Epi are slightly impacted by Fe3+. On the other hand, Epi and Fe2+ form a complex that acts as a strong reducing agent, which leads to the production of hydrogen peroxide via O-2 reduction, and to a facilitated formation of the Epi-Fe3+ complexes. Epi is not oxidized in this process, i.e. Fe2+ is not an electron shuttle, but the electron donor. Epi-catalyzed oxidation of Fe2+ represents a plausible chemical basis of stress-related damage to heart cells. In addition, our results support the previous findings on the interactions of catecholamine moieties in polymers with iron and provide a novel strategy for improving the efficiency of cross-linking.
T2  - Scientific Reports
T1  - Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH
VL  - 8
SP  - 3530
DO  - 10.1038/s41598-018-21940-7
ER  - 
@article{
author = "Korać, Jelena and Stanković, Dalibor M. and Stanić, Marina and Bajuk-Bogdanović, Danica V. and Žižić, Milan and Bogdanović-Pristov, Jelena and Grgurić-Šipka, Sanja and Popović-Bijelić, Ana D. and Spasojević, Ivan",
year = "2018",
abstract = "Coordinate and redox interactions of epinephrine (Epi) with iron at physiological pH are essential for understanding two very different phenomena - the detrimental effects of chronic stress on the cardiovascular system and the cross-linking of catecholamine-rich biopolymers and frameworks. Here we show that Epi and Fe3+ form stable high-spin complexes in the 1:1 or 3:1 stoichiometry, depending on the Epi/Fe3+ concentration ratio (low or high). Oxygen atoms on the catechol ring represent the sites of coordinate bond formation within physiologically relevant bidentate 1:1 complex. Redox properties of Epi are slightly impacted by Fe3+. On the other hand, Epi and Fe2+ form a complex that acts as a strong reducing agent, which leads to the production of hydrogen peroxide via O-2 reduction, and to a facilitated formation of the Epi-Fe3+ complexes. Epi is not oxidized in this process, i.e. Fe2+ is not an electron shuttle, but the electron donor. Epi-catalyzed oxidation of Fe2+ represents a plausible chemical basis of stress-related damage to heart cells. In addition, our results support the previous findings on the interactions of catecholamine moieties in polymers with iron and provide a novel strategy for improving the efficiency of cross-linking.",
journal = "Scientific Reports",
title = "Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH",
volume = "8",
pages = "3530",
doi = "10.1038/s41598-018-21940-7"
}
Korać, J., Stanković, D. M., Stanić, M., Bajuk-Bogdanović, D. V., Žižić, M., Bogdanović-Pristov, J., Grgurić-Šipka, S., Popović-Bijelić, A. D.,& Spasojević, I.. (2018). Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH. in Scientific Reports, 8, 3530.
https://doi.org/10.1038/s41598-018-21940-7
Korać J, Stanković DM, Stanić M, Bajuk-Bogdanović DV, Žižić M, Bogdanović-Pristov J, Grgurić-Šipka S, Popović-Bijelić AD, Spasojević I. Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH. in Scientific Reports. 2018;8:3530.
doi:10.1038/s41598-018-21940-7 .
Korać, Jelena, Stanković, Dalibor M., Stanić, Marina, Bajuk-Bogdanović, Danica V., Žižić, Milan, Bogdanović-Pristov, Jelena, Grgurić-Šipka, Sanja, Popović-Bijelić, Ana D., Spasojević, Ivan, "Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH" in Scientific Reports, 8 (2018):3530,
https://doi.org/10.1038/s41598-018-21940-7 . .
1
13
7
11

Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity

Božić, Bojana; Korać, Jelena; Stanković, Dalibor M.; Stanić, Marina; Romanović, Mima Č.; Bogdanović-Pristov, Jelena; Spasić, Snežana D.; Popović-Bijelić, Ana D.; Spasojević, Ivan; Bajčetić, Milica

(2018)

TY  - JOUR
AU  - Božić, Bojana
AU  - Korać, Jelena
AU  - Stanković, Dalibor M.
AU  - Stanić, Marina
AU  - Romanović, Mima Č.
AU  - Bogdanović-Pristov, Jelena
AU  - Spasić, Snežana D.
AU  - Popović-Bijelić, Ana D.
AU  - Spasojević, Ivan
AU  - Bajčetić, Milica
PY  - 2018
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0891584918311213
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7896
AB  - An increase in the copper pool in body fluids has been related to a number of pathological conditions, including infections. Copper ions may affect antibiotics via the formation of coordination bonds and/or redox reactions. Herein, we analyzed the interactions of Cu2+ with eight β-lactam antibiotics using UV–Vis spectrophotometry, EPR spectroscopy, and electrochemical methods. Penicillin G did not show any detectable interactions with Cu2+. Ampicillin, amoxicillin and cephalexin formed stable colored complexes with octahedral coordination environment of Cu2+ with tetragonal distortion, and primary amine group as the site of coordinate bond formation. These β-lactams increased the solubility of Cu2+ in the phosphate buffer. Ceftazidime and Cu2+ formed a complex with a similar geometry and gave rise to an organic radical. Ceftriaxone-Cu2+ complex appears to exhibit different geometry. All complexes showed 1:1 stoichiometry. Cefaclor reduced Cu2+ to Cu1+ that further reacted with molecular oxygen to produce hydrogen peroxide. Finally, meropenem underwent degradation in the presence of copper. The analysis of activity against Escherichia coli and Staphylococcus aureus showed that the effects of meropenem, amoxicillin, ampicillin, and ceftriaxone were significantly hindered in the presence of copper ions. The interactions with copper ions should be taken into account regarding the problem of antibiotic resistance and in the selection of the most efficient antimicrobial therapy for patients with altered copper homeostasis. © 2018 Elsevier Inc.
T2  - Free Radical Biology and Medicine
T1  - Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity
VL  - 129
SP  - 279
EP  - 285
DO  - 10.1016/j.freeradbiomed.2018.09.038
ER  - 
@article{
author = "Božić, Bojana and Korać, Jelena and Stanković, Dalibor M. and Stanić, Marina and Romanović, Mima Č. and Bogdanović-Pristov, Jelena and Spasić, Snežana D. and Popović-Bijelić, Ana D. and Spasojević, Ivan and Bajčetić, Milica",
year = "2018",
abstract = "An increase in the copper pool in body fluids has been related to a number of pathological conditions, including infections. Copper ions may affect antibiotics via the formation of coordination bonds and/or redox reactions. Herein, we analyzed the interactions of Cu2+ with eight β-lactam antibiotics using UV–Vis spectrophotometry, EPR spectroscopy, and electrochemical methods. Penicillin G did not show any detectable interactions with Cu2+. Ampicillin, amoxicillin and cephalexin formed stable colored complexes with octahedral coordination environment of Cu2+ with tetragonal distortion, and primary amine group as the site of coordinate bond formation. These β-lactams increased the solubility of Cu2+ in the phosphate buffer. Ceftazidime and Cu2+ formed a complex with a similar geometry and gave rise to an organic radical. Ceftriaxone-Cu2+ complex appears to exhibit different geometry. All complexes showed 1:1 stoichiometry. Cefaclor reduced Cu2+ to Cu1+ that further reacted with molecular oxygen to produce hydrogen peroxide. Finally, meropenem underwent degradation in the presence of copper. The analysis of activity against Escherichia coli and Staphylococcus aureus showed that the effects of meropenem, amoxicillin, ampicillin, and ceftriaxone were significantly hindered in the presence of copper ions. The interactions with copper ions should be taken into account regarding the problem of antibiotic resistance and in the selection of the most efficient antimicrobial therapy for patients with altered copper homeostasis. © 2018 Elsevier Inc.",
journal = "Free Radical Biology and Medicine",
title = "Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity",
volume = "129",
pages = "279-285",
doi = "10.1016/j.freeradbiomed.2018.09.038"
}
Božić, B., Korać, J., Stanković, D. M., Stanić, M., Romanović, M. Č., Bogdanović-Pristov, J., Spasić, S. D., Popović-Bijelić, A. D., Spasojević, I.,& Bajčetić, M.. (2018). Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity. in Free Radical Biology and Medicine, 129, 279-285.
https://doi.org/10.1016/j.freeradbiomed.2018.09.038
Božić B, Korać J, Stanković DM, Stanić M, Romanović MČ, Bogdanović-Pristov J, Spasić SD, Popović-Bijelić AD, Spasojević I, Bajčetić M. Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity. in Free Radical Biology and Medicine. 2018;129:279-285.
doi:10.1016/j.freeradbiomed.2018.09.038 .
Božić, Bojana, Korać, Jelena, Stanković, Dalibor M., Stanić, Marina, Romanović, Mima Č., Bogdanović-Pristov, Jelena, Spasić, Snežana D., Popović-Bijelić, Ana D., Spasojević, Ivan, Bajčetić, Milica, "Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity" in Free Radical Biology and Medicine, 129 (2018):279-285,
https://doi.org/10.1016/j.freeradbiomed.2018.09.038 . .
1
11
4
12

Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine

Božić, Bojana; Korać, Jelena; Stanković, Dalibor M.; Stanić, Marina; Popović-Bijelić, Ana D.; Bogdanović-Pristov, Jelena; Spasojević, Ivan; Bajčetić, Milica

(2017)

TY  - JOUR
AU  - Božić, Bojana
AU  - Korać, Jelena
AU  - Stanković, Dalibor M.
AU  - Stanić, Marina
AU  - Popović-Bijelić, Ana D.
AU  - Bogdanović-Pristov, Jelena
AU  - Spasojević, Ivan
AU  - Bajčetić, Milica
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1878
AB  - Toxic effects of unconjugated bilirubin (BR) in neonatal hyperbilirubinemia have been related to redox and/or coordinate interactions with Cu2+. However, the development and mechanisms of such interactions at physiological pH have not been resolved. This study shows that BR reduces Cu2+ to Cu1+ in 1:1 stoichiometry. Apparently, BR undergoes degradation, i.e. BR and Cu2+ do not form stable complexes. The binding of Cu2+ to inorganic phosphates, liposomal phosphate groups, or to chelating drug penicillamine, impedes redox interactions with BR. Cu1+ undergoes spontaneous oxidation by O-2 resulting in hydrogen peroxide accumulation and hydroxyl radical production. In relation to this, copper and BR induced synergistic oxidative/damaging effects on erythrocytes membrane, which were alleviated by penicillamine. The production of reactive oxygen species by BR and copper represents a plausible cause of BR toxic effects and cell damage in hyperbilirubinemia. Further examination of therapeutic potentials of copper chelators in the treatment of severe neonatal hyperbilirubinemia is needed.
T2  - Chemico-Biological Interactions
T1  - Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine
VL  - 278
SP  - 129
EP  - 134
DO  - 10.1016/j.cbi.2017.10.022
ER  - 
@article{
author = "Božić, Bojana and Korać, Jelena and Stanković, Dalibor M. and Stanić, Marina and Popović-Bijelić, Ana D. and Bogdanović-Pristov, Jelena and Spasojević, Ivan and Bajčetić, Milica",
year = "2017",
abstract = "Toxic effects of unconjugated bilirubin (BR) in neonatal hyperbilirubinemia have been related to redox and/or coordinate interactions with Cu2+. However, the development and mechanisms of such interactions at physiological pH have not been resolved. This study shows that BR reduces Cu2+ to Cu1+ in 1:1 stoichiometry. Apparently, BR undergoes degradation, i.e. BR and Cu2+ do not form stable complexes. The binding of Cu2+ to inorganic phosphates, liposomal phosphate groups, or to chelating drug penicillamine, impedes redox interactions with BR. Cu1+ undergoes spontaneous oxidation by O-2 resulting in hydrogen peroxide accumulation and hydroxyl radical production. In relation to this, copper and BR induced synergistic oxidative/damaging effects on erythrocytes membrane, which were alleviated by penicillamine. The production of reactive oxygen species by BR and copper represents a plausible cause of BR toxic effects and cell damage in hyperbilirubinemia. Further examination of therapeutic potentials of copper chelators in the treatment of severe neonatal hyperbilirubinemia is needed.",
journal = "Chemico-Biological Interactions",
title = "Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine",
volume = "278",
pages = "129-134",
doi = "10.1016/j.cbi.2017.10.022"
}
Božić, B., Korać, J., Stanković, D. M., Stanić, M., Popović-Bijelić, A. D., Bogdanović-Pristov, J., Spasojević, I.,& Bajčetić, M.. (2017). Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine. in Chemico-Biological Interactions, 278, 129-134.
https://doi.org/10.1016/j.cbi.2017.10.022
Božić B, Korać J, Stanković DM, Stanić M, Popović-Bijelić AD, Bogdanović-Pristov J, Spasojević I, Bajčetić M. Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine. in Chemico-Biological Interactions. 2017;278:129-134.
doi:10.1016/j.cbi.2017.10.022 .
Božić, Bojana, Korać, Jelena, Stanković, Dalibor M., Stanić, Marina, Popović-Bijelić, Ana D., Bogdanović-Pristov, Jelena, Spasojević, Ivan, Bajčetić, Milica, "Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine" in Chemico-Biological Interactions, 278 (2017):129-134,
https://doi.org/10.1016/j.cbi.2017.10.022 . .
4
2
5

Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment

Spasojević, Dragica; Zmejkoski, Danica; Glamočlija, Jasmina; Nikolić, Miloš M.; Soković, Marina; Milošević, Verica; Jarić, Ivana; Stojanović, Marijana; Marinković, Emilija; Barisani-Asenbauer, Talin; Prodanović, Radivoje; Jovanović, Miloš; Radotić, Ksenija

(2016)

TY  - JOUR
AU  - Spasojević, Dragica
AU  - Zmejkoski, Danica
AU  - Glamočlija, Jasmina
AU  - Nikolić, Miloš M.
AU  - Soković, Marina
AU  - Milošević, Verica
AU  - Jarić, Ivana
AU  - Stojanović, Marijana
AU  - Marinković, Emilija
AU  - Barisani-Asenbauer, Talin
AU  - Prodanović, Radivoje
AU  - Jovanović, Miloš
AU  - Radotić, Ksenija
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1336
AB  - Nowadays bacterial resistance to known antibiotics is a serious health problem. In order to achieve more efficient treatment, lately there is an effort to find new substances, such as certain biomaterials, that are non-toxic to humans with antibiotic potential. Lignins and lignin-derived compounds have been proposed to be good candidates for use in medicine and health maintenance. In this study, the antibacterial activity of the lignin model polymer dehydrogenate polymer (DHP) in alginate hydrogel (Alg) was studied. The obtained results show that DHP-Alg has strong antimicrobial activity against several bacterial strains and biofilms and does not have a toxic effect on human epithelial cells. These results strongly suggest its application as a wound healing agent or as an adjunct substance for wound treatments. (C) 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
T2  - International Journal of Antimicrobial Agents
T1  - Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment
VL  - 48
IS  - 6
SP  - 732
EP  - 735
DO  - 10.1016/j.ijantimicag.2016.08.014
ER  - 
@article{
author = "Spasojević, Dragica and Zmejkoski, Danica and Glamočlija, Jasmina and Nikolić, Miloš M. and Soković, Marina and Milošević, Verica and Jarić, Ivana and Stojanović, Marijana and Marinković, Emilija and Barisani-Asenbauer, Talin and Prodanović, Radivoje and Jovanović, Miloš and Radotić, Ksenija",
year = "2016",
abstract = "Nowadays bacterial resistance to known antibiotics is a serious health problem. In order to achieve more efficient treatment, lately there is an effort to find new substances, such as certain biomaterials, that are non-toxic to humans with antibiotic potential. Lignins and lignin-derived compounds have been proposed to be good candidates for use in medicine and health maintenance. In this study, the antibacterial activity of the lignin model polymer dehydrogenate polymer (DHP) in alginate hydrogel (Alg) was studied. The obtained results show that DHP-Alg has strong antimicrobial activity against several bacterial strains and biofilms and does not have a toxic effect on human epithelial cells. These results strongly suggest its application as a wound healing agent or as an adjunct substance for wound treatments. (C) 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.",
journal = "International Journal of Antimicrobial Agents",
title = "Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment",
volume = "48",
number = "6",
pages = "732-735",
doi = "10.1016/j.ijantimicag.2016.08.014"
}
Spasojević, D., Zmejkoski, D., Glamočlija, J., Nikolić, M. M., Soković, M., Milošević, V., Jarić, I., Stojanović, M., Marinković, E., Barisani-Asenbauer, T., Prodanović, R., Jovanović, M.,& Radotić, K.. (2016). Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment. in International Journal of Antimicrobial Agents, 48(6), 732-735.
https://doi.org/10.1016/j.ijantimicag.2016.08.014
Spasojević D, Zmejkoski D, Glamočlija J, Nikolić MM, Soković M, Milošević V, Jarić I, Stojanović M, Marinković E, Barisani-Asenbauer T, Prodanović R, Jovanović M, Radotić K. Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment. in International Journal of Antimicrobial Agents. 2016;48(6):732-735.
doi:10.1016/j.ijantimicag.2016.08.014 .
Spasojević, Dragica, Zmejkoski, Danica, Glamočlija, Jasmina, Nikolić, Miloš M., Soković, Marina, Milošević, Verica, Jarić, Ivana, Stojanović, Marijana, Marinković, Emilija, Barisani-Asenbauer, Talin, Prodanović, Radivoje, Jovanović, Miloš, Radotić, Ksenija, "Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment" in International Journal of Antimicrobial Agents, 48, no. 6 (2016):732-735,
https://doi.org/10.1016/j.ijantimicag.2016.08.014 . .
3
44
21
40

Comparison of macromolecular interactions in the cell walls of hardwood, softwood and maize by fluorescence and FTIR spectroscopy, differential polarization laser scanning microscopy and X-ray diffraction

Đikanović, Daniela; Devečerski, Aleksandar; Steinbach, Gabor; Simonović, Jasna; Matović, Branko; Garab, Gyozo ; Kalauzi, Aleksandar; Radotić, Ksenija

(Springer, 2016)

TY  - JOUR
AU  - Đikanović, Daniela
AU  - Devečerski, Aleksandar
AU  - Steinbach, Gabor
AU  - Simonović, Jasna
AU  - Matović, Branko
AU  - Garab, Gyozo 
AU  - Kalauzi, Aleksandar
AU  - Radotić, Ksenija
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1007
AB  - Interactions between macromolecules in the cell walls of different plant origin were compared, namely spruce wood (Picea omorika (PaniA double dagger) PurkiAe) as an example of softwood, maple wood (Acer platanoides L.) as a hardwood and maize stems (Zea mays L.) as a herbaceous plant from the grass family and widely used agricultural plant. Interactions of macromolecules in isolated cell walls from the three species were compared by using Fourier transform infrared spectroscopy, X-ray diffraction and fluorescence spectroscopy. Linear dichroism of the cell walls was observed by using differential polarization laser scanning microscope (DP-LSM), which provides information of macromolecular order. This method has not previously been used for comparison of the cell walls of various plant origins. It was shown that the maize cell walls have higher amount of hydrogen bonds that lead to more regular packing of cellulose molecules, simpler structure of lignin, and a higher crystallinity of the cell wall in relation to the walls of woody plants. DP-LSM and fluorescence spectroscopy results indicate that maize has simpler and more ordered structure than both woody species. The results of this work provide new data for comparison of the cell wall properties that may be important for selection of appropriate plant for possible applications as a source of biomass. This may be a contribution to the development of efficient deconstruction and separation technologies that enable release of sugar and aromatic compounds from the cell wall macromolecular structure.
PB  - Springer
T2  - Wood Science and Technology
T1  - Comparison of macromolecular interactions in the cell walls of hardwood, softwood and maize by fluorescence and FTIR spectroscopy, differential polarization laser scanning microscopy and X-ray diffraction
VL  - 50
IS  - 3
SP  - 547
EP  - 566
DO  - 10.1007/s00226-015-0792-y
ER  - 
@article{
author = "Đikanović, Daniela and Devečerski, Aleksandar and Steinbach, Gabor and Simonović, Jasna and Matović, Branko and Garab, Gyozo  and Kalauzi, Aleksandar and Radotić, Ksenija",
year = "2016",
abstract = "Interactions between macromolecules in the cell walls of different plant origin were compared, namely spruce wood (Picea omorika (PaniA double dagger) PurkiAe) as an example of softwood, maple wood (Acer platanoides L.) as a hardwood and maize stems (Zea mays L.) as a herbaceous plant from the grass family and widely used agricultural plant. Interactions of macromolecules in isolated cell walls from the three species were compared by using Fourier transform infrared spectroscopy, X-ray diffraction and fluorescence spectroscopy. Linear dichroism of the cell walls was observed by using differential polarization laser scanning microscope (DP-LSM), which provides information of macromolecular order. This method has not previously been used for comparison of the cell walls of various plant origins. It was shown that the maize cell walls have higher amount of hydrogen bonds that lead to more regular packing of cellulose molecules, simpler structure of lignin, and a higher crystallinity of the cell wall in relation to the walls of woody plants. DP-LSM and fluorescence spectroscopy results indicate that maize has simpler and more ordered structure than both woody species. The results of this work provide new data for comparison of the cell wall properties that may be important for selection of appropriate plant for possible applications as a source of biomass. This may be a contribution to the development of efficient deconstruction and separation technologies that enable release of sugar and aromatic compounds from the cell wall macromolecular structure.",
publisher = "Springer",
journal = "Wood Science and Technology",
title = "Comparison of macromolecular interactions in the cell walls of hardwood, softwood and maize by fluorescence and FTIR spectroscopy, differential polarization laser scanning microscopy and X-ray diffraction",
volume = "50",
number = "3",
pages = "547-566",
doi = "10.1007/s00226-015-0792-y"
}
Đikanović, D., Devečerski, A., Steinbach, G., Simonović, J., Matović, B., Garab, G., Kalauzi, A.,& Radotić, K.. (2016). Comparison of macromolecular interactions in the cell walls of hardwood, softwood and maize by fluorescence and FTIR spectroscopy, differential polarization laser scanning microscopy and X-ray diffraction. in Wood Science and Technology
Springer., 50(3), 547-566.
https://doi.org/10.1007/s00226-015-0792-y
Đikanović D, Devečerski A, Steinbach G, Simonović J, Matović B, Garab G, Kalauzi A, Radotić K. Comparison of macromolecular interactions in the cell walls of hardwood, softwood and maize by fluorescence and FTIR spectroscopy, differential polarization laser scanning microscopy and X-ray diffraction. in Wood Science and Technology. 2016;50(3):547-566.
doi:10.1007/s00226-015-0792-y .
Đikanović, Daniela, Devečerski, Aleksandar, Steinbach, Gabor, Simonović, Jasna, Matović, Branko, Garab, Gyozo , Kalauzi, Aleksandar, Radotić, Ksenija, "Comparison of macromolecular interactions in the cell walls of hardwood, softwood and maize by fluorescence and FTIR spectroscopy, differential polarization laser scanning microscopy and X-ray diffraction" in Wood Science and Technology, 50, no. 3 (2016):547-566,
https://doi.org/10.1007/s00226-015-0792-y . .
14
10
14