Eureka Project [E!9982]

Link to this page

Eureka Project [E!9982]

Authors

Publications

Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species

Dojčinović, Biljana P.; Jančar, Boštjan; Bessais, Lotfi; Kremenović, Aleksandar S.; Jović-Jovičić, Nataša P.; Banković, Predrag T.; Stanković, Dalibor M.; Ognjanović, Miloš; Antić, Bratislav

(2019)

TY  - JOUR
AU  - Dojčinović, Biljana P.
AU  - Jančar, Boštjan
AU  - Bessais, Lotfi
AU  - Kremenović, Aleksandar S.
AU  - Jović-Jovičić, Nataša P.
AU  - Banković, Predrag T.
AU  - Stanković, Dalibor M.
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8612
AB  - Herein we report effects of partial substitution of Fe3+ by Y3+ in magnetite (Fe3O4) on morphology and inorganic arsenic species adsorption efficiency of the Fe3-xYxO4 nanoparticles formed. The series of Fe3-xYxO4 (x = 0.00, 0.042 and 0.084, labeled as Y00, Y05 and Y10, respectively) was synthesized using co-precipitation followed by microwave-hydrothermal treatment (MW) at 200 degrees C. With increase of yttrium content (x value), both the morphological inhomogeneity of the samples and the fraction of spinel nanorods as compared to spinel pseudospherical particles increased. By both transmission electron microscopy and x-ray powder diffraction analyses, it was determined that the direction of growth of the spinel nanorods is along the [110] crystallographic direction. The Fe3-xYxO4 affinities of adsorption toward the inorganic arsenic species, As(III) (arsenite, AsO33-) and As(V) (arsenate, AsO43-), were investigated. Increased Y3+ content related to changes in sample morphology was followed by a decrease of As(III) removal efficiency and vice versa for As(V). The increase in Y3+ content, in addition to increasing the adsorption capacity for As(V), significantly expanded the optimum pH range for the maximum removal and decreased the contact time for necessary 50% removal (t(1/2)) of As(V) (Y00: pH 2-3, t(1/2) = 3.12 min; Y05: pH 2-6, t(1/2) = 2.12 min and Y10: pH 2-10, t(1/2) = 1.12 min). The results point to incorporation of Y3+ in the crystal lattice of magnetite, inducing nanorod spinel structure formation with significant changes in sorption properties important for the removal of inorganic arsenic from waters.
T2  - Nanotechnology
T1  - Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species
VL  - 30
IS  - 47
SP  - 475702
DO  - 10.1088/1361-6528/ab3ca2
ER  - 
@article{
author = "Dojčinović, Biljana P. and Jančar, Boštjan and Bessais, Lotfi and Kremenović, Aleksandar S. and Jović-Jovičić, Nataša P. and Banković, Predrag T. and Stanković, Dalibor M. and Ognjanović, Miloš and Antić, Bratislav",
year = "2019",
abstract = "Herein we report effects of partial substitution of Fe3+ by Y3+ in magnetite (Fe3O4) on morphology and inorganic arsenic species adsorption efficiency of the Fe3-xYxO4 nanoparticles formed. The series of Fe3-xYxO4 (x = 0.00, 0.042 and 0.084, labeled as Y00, Y05 and Y10, respectively) was synthesized using co-precipitation followed by microwave-hydrothermal treatment (MW) at 200 degrees C. With increase of yttrium content (x value), both the morphological inhomogeneity of the samples and the fraction of spinel nanorods as compared to spinel pseudospherical particles increased. By both transmission electron microscopy and x-ray powder diffraction analyses, it was determined that the direction of growth of the spinel nanorods is along the [110] crystallographic direction. The Fe3-xYxO4 affinities of adsorption toward the inorganic arsenic species, As(III) (arsenite, AsO33-) and As(V) (arsenate, AsO43-), were investigated. Increased Y3+ content related to changes in sample morphology was followed by a decrease of As(III) removal efficiency and vice versa for As(V). The increase in Y3+ content, in addition to increasing the adsorption capacity for As(V), significantly expanded the optimum pH range for the maximum removal and decreased the contact time for necessary 50% removal (t(1/2)) of As(V) (Y00: pH 2-3, t(1/2) = 3.12 min; Y05: pH 2-6, t(1/2) = 2.12 min and Y10: pH 2-10, t(1/2) = 1.12 min). The results point to incorporation of Y3+ in the crystal lattice of magnetite, inducing nanorod spinel structure formation with significant changes in sorption properties important for the removal of inorganic arsenic from waters.",
journal = "Nanotechnology",
title = "Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species",
volume = "30",
number = "47",
pages = "475702",
doi = "10.1088/1361-6528/ab3ca2"
}
Dojčinović, B. P., Jančar, B., Bessais, L., Kremenović, A. S., Jović-Jovičić, N. P., Banković, P. T., Stanković, D. M., Ognjanović, M.,& Antić, B.. (2019). Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species. in Nanotechnology, 30(47), 475702.
https://doi.org/10.1088/1361-6528/ab3ca2
Dojčinović BP, Jančar B, Bessais L, Kremenović AS, Jović-Jovičić NP, Banković PT, Stanković DM, Ognjanović M, Antić B. Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species. in Nanotechnology. 2019;30(47):475702.
doi:10.1088/1361-6528/ab3ca2 .
Dojčinović, Biljana P., Jančar, Boštjan, Bessais, Lotfi, Kremenović, Aleksandar S., Jović-Jovičić, Nataša P., Banković, Predrag T., Stanković, Dalibor M., Ognjanović, Miloš, Antić, Bratislav, "Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species" in Nanotechnology, 30, no. 47 (2019):475702,
https://doi.org/10.1088/1361-6528/ab3ca2 . .
5
2
5

99m Tc-, 90 Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis

Ognjanović, Miloš; Radović, Magdalena; Mirković, Marija D.; Prijović, Željko; Puerto Morales, Maria del; Čeh, Miran; Vranješ-Đurić, Sanja; Antić, Bratislav

(2019)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Radović, Magdalena
AU  - Mirković, Marija D.
AU  - Prijović, Željko
AU  - Puerto Morales, Maria del
AU  - Čeh, Miran
AU  - Vranješ-Đurić, Sanja
AU  - Antić, Bratislav
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8622
AB  - Development of a complex based on iron oxide nanoparticles (IONPs) for diagnosis and dual magnetic hyperthermia/radionuclide cancer therapy accomplishing high yields of radiolabeling and great magnetic heat induction is still a challenge. We report here the synthesis of citric acid, poly(acrylic acid) (PAA) and poly(ethylene glycol) coated IONPs and their labeling with three radionuclides, namely, technetium (99mTc), yttrium (90Y), and lutetium (177Lu), aiming at potential use in cancer diagnosis and therapy. Polyol-synthesized IONPs are a flowerlike structure with 13.5 nm spherically shaped cores and 24.8 nm diameter. PAA-coated nanoparticles (PAA@IONP) showed the best characteristics such as easy radiolabeling with very high yields (>97.5%) with all three radionuclides, and excellent in vitro stabilities with less than 10% of radionuclides detaching after 24 h. Heating ability of PAA@IONP in an alternating external magnetic field showed intrinsic loss power value of 7.3 nH m2/kg, which is one of higher reported values. Additionally, PAA@IONP itself presented no significant cytotoxicity to the CT-26 cancer cells, reaching IC50 at 60 μg/mL. However, under the external magnetic field, they show hyperthermia-mediated cells killing, which correlated with the magnetic field strength and time of exposure. Since PAA@IONP are easy to prepare, biocompatible, and with excellent magnetic heat induction, these nanoparticles radiolabeled with high-energy beta emitters 90Y and 177Lu have valuable potential as agent for dual magnetic hyperthermia/radionuclide therapy, while radiolabeled with 99mTc could be used in diagnostic imaging. Copyright © 2019 American Chemical Society.
T2  - ACS Applied Materials and Interfaces
T1  - 99m Tc-, 90 Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis
VL  - 11
IS  - 44
SP  - 41109
EP  - 41117
DO  - 10.1021/acsami.9b16428
ER  - 
@article{
author = "Ognjanović, Miloš and Radović, Magdalena and Mirković, Marija D. and Prijović, Željko and Puerto Morales, Maria del and Čeh, Miran and Vranješ-Đurić, Sanja and Antić, Bratislav",
year = "2019",
abstract = "Development of a complex based on iron oxide nanoparticles (IONPs) for diagnosis and dual magnetic hyperthermia/radionuclide cancer therapy accomplishing high yields of radiolabeling and great magnetic heat induction is still a challenge. We report here the synthesis of citric acid, poly(acrylic acid) (PAA) and poly(ethylene glycol) coated IONPs and their labeling with three radionuclides, namely, technetium (99mTc), yttrium (90Y), and lutetium (177Lu), aiming at potential use in cancer diagnosis and therapy. Polyol-synthesized IONPs are a flowerlike structure with 13.5 nm spherically shaped cores and 24.8 nm diameter. PAA-coated nanoparticles (PAA@IONP) showed the best characteristics such as easy radiolabeling with very high yields (>97.5%) with all three radionuclides, and excellent in vitro stabilities with less than 10% of radionuclides detaching after 24 h. Heating ability of PAA@IONP in an alternating external magnetic field showed intrinsic loss power value of 7.3 nH m2/kg, which is one of higher reported values. Additionally, PAA@IONP itself presented no significant cytotoxicity to the CT-26 cancer cells, reaching IC50 at 60 μg/mL. However, under the external magnetic field, they show hyperthermia-mediated cells killing, which correlated with the magnetic field strength and time of exposure. Since PAA@IONP are easy to prepare, biocompatible, and with excellent magnetic heat induction, these nanoparticles radiolabeled with high-energy beta emitters 90Y and 177Lu have valuable potential as agent for dual magnetic hyperthermia/radionuclide therapy, while radiolabeled with 99mTc could be used in diagnostic imaging. Copyright © 2019 American Chemical Society.",
journal = "ACS Applied Materials and Interfaces",
title = "99m Tc-, 90 Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis",
volume = "11",
number = "44",
pages = "41109-41117",
doi = "10.1021/acsami.9b16428"
}
Ognjanović, M., Radović, M., Mirković, M. D., Prijović, Ž., Puerto Morales, M. d., Čeh, M., Vranješ-Đurić, S.,& Antić, B.. (2019). 99m Tc-, 90 Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis. in ACS Applied Materials and Interfaces, 11(44), 41109-41117.
https://doi.org/10.1021/acsami.9b16428
Ognjanović M, Radović M, Mirković MD, Prijović Ž, Puerto Morales MD, Čeh M, Vranješ-Đurić S, Antić B. 99m Tc-, 90 Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis. in ACS Applied Materials and Interfaces. 2019;11(44):41109-41117.
doi:10.1021/acsami.9b16428 .
Ognjanović, Miloš, Radović, Magdalena, Mirković, Marija D., Prijović, Željko, Puerto Morales, Maria del, Čeh, Miran, Vranješ-Đurić, Sanja, Antić, Bratislav, "99m Tc-, 90 Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis" in ACS Applied Materials and Interfaces, 11, no. 44 (2019):41109-41117,
https://doi.org/10.1021/acsami.9b16428 . .
49
21
41