Ministry of Science and Technology of the People's Republic of China 451-02-818/2021-09/20

Link to this page

Ministry of Science and Technology of the People's Republic of China 451-02-818/2021-09/20

Authors

Publications

Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic

Antonijević, Đorđe; Despotović, Ana; Biočanin, Vladimir; Milošević, Miloš; Trišić, Dijana; Lazović, Vladimir M.; Zogović, Nevena; Milašin, Jelena; Ilić, Dragan V.

(2021)

TY  - JOUR
AU  - Antonijević, Đorđe
AU  - Despotović, Ana
AU  - Biočanin, Vladimir
AU  - Milošević, Miloš
AU  - Trišić, Dijana
AU  - Lazović, Vladimir M.
AU  - Zogović, Nevena
AU  - Milašin, Jelena
AU  - Ilić, Dragan V.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9880
AB  - The purpose of this study was to investigate the influence of different radiopacifiers on the physicochemical and biological properties of novel calcium silicate based endodontic ceramic enriched with bioactive nano-particulated hydroxyapatite – ECHA. Namely, ECHA was used as a basis for mixing with the following radiopacifiers: strontium fluoride (SrF2), zirconium dioxide (ZrO2) and bismuth oxide (Bi2O3). For comparison, Portland cement (PC) and mineral trioxide aggregate (MTA) were used. The following physicochemical characteristics were examined: the radiopacity, setting time, compressive strength, porosity, wettability and pH value. The biocompatibility of the cements was assessed by crystal violet, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and cell adhesion assays. The highest radiopacity was obtained for the ECHA + Bi2O3 mixture and MTA that were statistically significant in comparison to other materials (p < 0.05). Both initial and final setting times as well as compressive strengths were statistically lower for experimental cements than for PC and MTA (p < 0.05). The lowest total porosity was observed in the ECHA + ZrO2 group when compared with the other two experimental cements (p < 0.05), but not when compared with PC and MTA (p > 0.05). Experimental cements exhibited statistically higher contact angles of glycerol than PC and MTA (p < 0.05). For blood plasma, a statistical difference was found only between ECHA + Bi2O3 and PC (p < 0.05). All investigated materials had alkalization ability. Cell viability assays revealed that the extracts of tested cements did not exhibit cytotoxic effect on L929 cells. Scanning electron microscopy had shown a high degree of cell proliferation and adhesion of cells from apical papilla on experimental cements’ surfaces. Novel endodontic ceramics with nano-hydroxyapatite addition have satisfactory biological and physicochemical properties when compared to MTA and PC controls. Considerable lower setting time of experimental cements might present a huge advantage of these synthesized materials in clinical practice. SrF2 presents a novel promising radiopacifying agent for dental cements manufacturing.
T2  - Ceramics International
T1  - Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic
VL  - 47
IS  - 20
SP  - 28913
EP  - 28923
DO  - 10.1016/j.ceramint.2021.07.052
ER  - 
@article{
author = "Antonijević, Đorđe and Despotović, Ana and Biočanin, Vladimir and Milošević, Miloš and Trišić, Dijana and Lazović, Vladimir M. and Zogović, Nevena and Milašin, Jelena and Ilić, Dragan V.",
year = "2021",
abstract = "The purpose of this study was to investigate the influence of different radiopacifiers on the physicochemical and biological properties of novel calcium silicate based endodontic ceramic enriched with bioactive nano-particulated hydroxyapatite – ECHA. Namely, ECHA was used as a basis for mixing with the following radiopacifiers: strontium fluoride (SrF2), zirconium dioxide (ZrO2) and bismuth oxide (Bi2O3). For comparison, Portland cement (PC) and mineral trioxide aggregate (MTA) were used. The following physicochemical characteristics were examined: the radiopacity, setting time, compressive strength, porosity, wettability and pH value. The biocompatibility of the cements was assessed by crystal violet, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and cell adhesion assays. The highest radiopacity was obtained for the ECHA + Bi2O3 mixture and MTA that were statistically significant in comparison to other materials (p < 0.05). Both initial and final setting times as well as compressive strengths were statistically lower for experimental cements than for PC and MTA (p < 0.05). The lowest total porosity was observed in the ECHA + ZrO2 group when compared with the other two experimental cements (p < 0.05), but not when compared with PC and MTA (p > 0.05). Experimental cements exhibited statistically higher contact angles of glycerol than PC and MTA (p < 0.05). For blood plasma, a statistical difference was found only between ECHA + Bi2O3 and PC (p < 0.05). All investigated materials had alkalization ability. Cell viability assays revealed that the extracts of tested cements did not exhibit cytotoxic effect on L929 cells. Scanning electron microscopy had shown a high degree of cell proliferation and adhesion of cells from apical papilla on experimental cements’ surfaces. Novel endodontic ceramics with nano-hydroxyapatite addition have satisfactory biological and physicochemical properties when compared to MTA and PC controls. Considerable lower setting time of experimental cements might present a huge advantage of these synthesized materials in clinical practice. SrF2 presents a novel promising radiopacifying agent for dental cements manufacturing.",
journal = "Ceramics International",
title = "Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic",
volume = "47",
number = "20",
pages = "28913-28923",
doi = "10.1016/j.ceramint.2021.07.052"
}
Antonijević, Đ., Despotović, A., Biočanin, V., Milošević, M., Trišić, D., Lazović, V. M., Zogović, N., Milašin, J.,& Ilić, D. V.. (2021). Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic. in Ceramics International, 47(20), 28913-28923.
https://doi.org/10.1016/j.ceramint.2021.07.052
Antonijević Đ, Despotović A, Biočanin V, Milošević M, Trišić D, Lazović VM, Zogović N, Milašin J, Ilić DV. Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic. in Ceramics International. 2021;47(20):28913-28923.
doi:10.1016/j.ceramint.2021.07.052 .
Antonijević, Đorđe, Despotović, Ana, Biočanin, Vladimir, Milošević, Miloš, Trišić, Dijana, Lazović, Vladimir M., Zogović, Nevena, Milašin, Jelena, Ilić, Dragan V., "Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic" in Ceramics International, 47, no. 20 (2021):28913-28923,
https://doi.org/10.1016/j.ceramint.2021.07.052 . .
9
2
7