People Programme (Marie Curie Actions) European Union's Seventh Framework Programme under REA [609427]

Link to this page

People Programme (Marie Curie Actions) European Union's Seventh Framework Programme under REA [609427]

Authors

Publications

Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]

Marković, Zoran M.; Kovačova, Maria; Humpoliček, Petr; Budimir, Milica; Vajdak, Jan; Kubat, Pavel; Mičušik, Matej; Švajdlenkova, Helena; Danko, Martin; Capakova, Zdenka; Lehocky, Marian; Todorović-Marković, Biljana; Špitalsky, Zdenko

(2020)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Kovačova, Maria
AU  - Humpoliček, Petr
AU  - Budimir, Milica
AU  - Vajdak, Jan
AU  - Kubat, Pavel
AU  - Mičušik, Matej
AU  - Švajdlenkova, Helena
AU  - Danko, Martin
AU  - Capakova, Zdenka
AU  - Lehocky, Marian
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdenko
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9615
AB  - Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.
T2  - Photodiagnosis and Photodynamic Therapy
T1  - Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]
VL  - 32
SP  - 101939
DO  - 10.1016/j.pdpdt.2020.101939
ER  - 
@article{
author = "Marković, Zoran M. and Kovačova, Maria and Humpoliček, Petr and Budimir, Milica and Vajdak, Jan and Kubat, Pavel and Mičušik, Matej and Švajdlenkova, Helena and Danko, Martin and Capakova, Zdenka and Lehocky, Marian and Todorović-Marković, Biljana and Špitalsky, Zdenko",
year = "2020",
abstract = "Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.",
journal = "Photodiagnosis and Photodynamic Therapy",
title = "Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]",
volume = "32",
pages = "101939",
doi = "10.1016/j.pdpdt.2020.101939"
}
Marković, Z. M., Kovačova, M., Humpoliček, P., Budimir, M., Vajdak, J., Kubat, P., Mičušik, M., Švajdlenkova, H., Danko, M., Capakova, Z., Lehocky, M., Todorović-Marković, B.,& Špitalsky, Z.. (2020). Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]. in Photodiagnosis and Photodynamic Therapy, 32, 101939.
https://doi.org/10.1016/j.pdpdt.2020.101939
Marković ZM, Kovačova M, Humpoliček P, Budimir M, Vajdak J, Kubat P, Mičušik M, Švajdlenkova H, Danko M, Capakova Z, Lehocky M, Todorović-Marković B, Špitalsky Z. Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]. in Photodiagnosis and Photodynamic Therapy. 2020;32:101939.
doi:10.1016/j.pdpdt.2020.101939 .
Marković, Zoran M., Kovačova, Maria, Humpoliček, Petr, Budimir, Milica, Vajdak, Jan, Kubat, Pavel, Mičušik, Matej, Švajdlenkova, Helena, Danko, Martin, Capakova, Zdenka, Lehocky, Marian, Todorović-Marković, Biljana, Špitalsky, Zdenko, "Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]" in Photodiagnosis and Photodynamic Therapy, 32 (2020):101939,
https://doi.org/10.1016/j.pdpdt.2020.101939 . .

Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae

Marković, Zoran M.; Kovačova, Maria; Humpoliček, Petr; Budimir, Milica; Vajdak, Jan; Kubat, Pavel; Mičušik, Matej; Švajdlenkova, Helena; Danko, Martin; Capakova, Zdenka; Lehocky, Marian; Todorović-Marković, Biljana; Špitalsky, Zdenko

(2019)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Kovačova, Maria
AU  - Humpoliček, Petr
AU  - Budimir, Milica
AU  - Vajdak, Jan
AU  - Kubat, Pavel
AU  - Mičušik, Matej
AU  - Švajdlenkova, Helena
AU  - Danko, Martin
AU  - Capakova, Zdenka
AU  - Lehocky, Marian
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdenko
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8174
AB  - Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.
T2  - Photodiagnosis and Photodynamic Therapy
T1  - Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae
VL  - 26
SP  - 342
EP  - 349
DO  - 10.1016/j.pdpdt.2019.04.019
ER  - 
@article{
author = "Marković, Zoran M. and Kovačova, Maria and Humpoliček, Petr and Budimir, Milica and Vajdak, Jan and Kubat, Pavel and Mičušik, Matej and Švajdlenkova, Helena and Danko, Martin and Capakova, Zdenka and Lehocky, Marian and Todorović-Marković, Biljana and Špitalsky, Zdenko",
year = "2019",
abstract = "Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.",
journal = "Photodiagnosis and Photodynamic Therapy",
title = "Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae",
volume = "26",
pages = "342-349",
doi = "10.1016/j.pdpdt.2019.04.019"
}
Marković, Z. M., Kovačova, M., Humpoliček, P., Budimir, M., Vajdak, J., Kubat, P., Mičušik, M., Švajdlenkova, H., Danko, M., Capakova, Z., Lehocky, M., Todorović-Marković, B.,& Špitalsky, Z.. (2019). Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. in Photodiagnosis and Photodynamic Therapy, 26, 342-349.
https://doi.org/10.1016/j.pdpdt.2019.04.019
Marković ZM, Kovačova M, Humpoliček P, Budimir M, Vajdak J, Kubat P, Mičušik M, Švajdlenkova H, Danko M, Capakova Z, Lehocky M, Todorović-Marković B, Špitalsky Z. Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. in Photodiagnosis and Photodynamic Therapy. 2019;26:342-349.
doi:10.1016/j.pdpdt.2019.04.019 .
Marković, Zoran M., Kovačova, Maria, Humpoliček, Petr, Budimir, Milica, Vajdak, Jan, Kubat, Pavel, Mičušik, Matej, Švajdlenkova, Helena, Danko, Martin, Capakova, Zdenka, Lehocky, Marian, Todorović-Marković, Biljana, Špitalsky, Zdenko, "Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae" in Photodiagnosis and Photodynamic Therapy, 26 (2019):342-349,
https://doi.org/10.1016/j.pdpdt.2019.04.019 . .
58
30
55

Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae

Marković, Zoran M.; Kovačova, Maria; Humpoliček, Petr; Budimir, Milica; Vajdak, Jan; Kubat, Pavel; Mičušik, Matej; Švajdlenkova, Helena; Danko, Martin; Capakova, Zdenka; Lehocky, Marian; Todorović-Marković, Biljana; Špitalsky, Zdenko

(2019)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Kovačova, Maria
AU  - Humpoliček, Petr
AU  - Budimir, Milica
AU  - Vajdak, Jan
AU  - Kubat, Pavel
AU  - Mičušik, Matej
AU  - Švajdlenkova, Helena
AU  - Danko, Martin
AU  - Capakova, Zdenka
AU  - Lehocky, Marian
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdenko
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8187
AB  - Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.
T2  - Photodiagnosis and Photodynamic Therapy
T1  - Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae
VL  - 26
SP  - 342
EP  - 349
DO  - 10.1016/j.pdpdt.2019.04.019
ER  - 
@article{
author = "Marković, Zoran M. and Kovačova, Maria and Humpoliček, Petr and Budimir, Milica and Vajdak, Jan and Kubat, Pavel and Mičušik, Matej and Švajdlenkova, Helena and Danko, Martin and Capakova, Zdenka and Lehocky, Marian and Todorović-Marković, Biljana and Špitalsky, Zdenko",
year = "2019",
abstract = "Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.",
journal = "Photodiagnosis and Photodynamic Therapy",
title = "Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae",
volume = "26",
pages = "342-349",
doi = "10.1016/j.pdpdt.2019.04.019"
}
Marković, Z. M., Kovačova, M., Humpoliček, P., Budimir, M., Vajdak, J., Kubat, P., Mičušik, M., Švajdlenkova, H., Danko, M., Capakova, Z., Lehocky, M., Todorović-Marković, B.,& Špitalsky, Z.. (2019). Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. in Photodiagnosis and Photodynamic Therapy, 26, 342-349.
https://doi.org/10.1016/j.pdpdt.2019.04.019
Marković ZM, Kovačova M, Humpoliček P, Budimir M, Vajdak J, Kubat P, Mičušik M, Švajdlenkova H, Danko M, Capakova Z, Lehocky M, Todorović-Marković B, Špitalsky Z. Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. in Photodiagnosis and Photodynamic Therapy. 2019;26:342-349.
doi:10.1016/j.pdpdt.2019.04.019 .
Marković, Zoran M., Kovačova, Maria, Humpoliček, Petr, Budimir, Milica, Vajdak, Jan, Kubat, Pavel, Mičušik, Matej, Švajdlenkova, Helena, Danko, Martin, Capakova, Zdenka, Lehocky, Marian, Todorović-Marković, Biljana, Špitalsky, Zdenko, "Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae" in Photodiagnosis and Photodynamic Therapy, 26 (2019):342-349,
https://doi.org/10.1016/j.pdpdt.2019.04.019 . .
58
30
55

Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria

Marković, Zoran M.; Jovanović, Svetlana P.; Mašković, Pavle Z.; Danko, Martin; Mičušik, Matej; Pavlović, Vladimir B.; Milivojević, Dušan; Kleinova, Angela; Špitalsky, Zdenko; Todorović-Marković, Biljana

(2018)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Jovanović, Svetlana P.
AU  - Mašković, Pavle Z.
AU  - Danko, Martin
AU  - Mičušik, Matej
AU  - Pavlović, Vladimir B.
AU  - Milivojević, Dušan
AU  - Kleinova, Angela
AU  - Špitalsky, Zdenko
AU  - Todorović-Marković, Biljana
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7880
AB  - Due to controversial reports concerning antibacterial activity of different graphene based materials it is very important to investigate their antibacterial action on a wide range of Gram-positive and Gram-negative bacteria. In this paper we have investigated the structure induced phototoxic antibacterial activity of four types of graphene based materials: graphene oxide (GO), graphene quantum dots (GQDs), carbon quantum dots (CQDs) and nitrogen doped carbon quantum dots (N-CQDs). Antibacterial activity was tested on 19 types of bacteria. It is found that nanometer-size CQDs and N-CQDs are the most potent agents whereas micrometer-size GO has very poor antibacterial activity. Electron paramagnetic resonance measurements confirmed photodynamic production of singlet oxygen for all types of used quantum dots. Detailed analysis has shown that N-CQDs are an excellent photodynamic antibacterial agent for treatment of bacterial infections induced by Enterobacter aerogenes (E. aerogenes), Proteus mirabilis (P. mirabilis), Staphylococcus saprophyticus (S. saprophyticus), Listeria monocytogenes (L. monocytogenes), Salmonella typhimurium (S. typhimurium) and Klebsiella pneumoniae.
T2  - RSC Advances
T1  - Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria
VL  - 8
IS  - 55
SP  - 31337
EP  - 31347
DO  - 10.1039/C8RA04664F
ER  - 
@article{
author = "Marković, Zoran M. and Jovanović, Svetlana P. and Mašković, Pavle Z. and Danko, Martin and Mičušik, Matej and Pavlović, Vladimir B. and Milivojević, Dušan and Kleinova, Angela and Špitalsky, Zdenko and Todorović-Marković, Biljana",
year = "2018",
abstract = "Due to controversial reports concerning antibacterial activity of different graphene based materials it is very important to investigate their antibacterial action on a wide range of Gram-positive and Gram-negative bacteria. In this paper we have investigated the structure induced phototoxic antibacterial activity of four types of graphene based materials: graphene oxide (GO), graphene quantum dots (GQDs), carbon quantum dots (CQDs) and nitrogen doped carbon quantum dots (N-CQDs). Antibacterial activity was tested on 19 types of bacteria. It is found that nanometer-size CQDs and N-CQDs are the most potent agents whereas micrometer-size GO has very poor antibacterial activity. Electron paramagnetic resonance measurements confirmed photodynamic production of singlet oxygen for all types of used quantum dots. Detailed analysis has shown that N-CQDs are an excellent photodynamic antibacterial agent for treatment of bacterial infections induced by Enterobacter aerogenes (E. aerogenes), Proteus mirabilis (P. mirabilis), Staphylococcus saprophyticus (S. saprophyticus), Listeria monocytogenes (L. monocytogenes), Salmonella typhimurium (S. typhimurium) and Klebsiella pneumoniae.",
journal = "RSC Advances",
title = "Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria",
volume = "8",
number = "55",
pages = "31337-31347",
doi = "10.1039/C8RA04664F"
}
Marković, Z. M., Jovanović, S. P., Mašković, P. Z., Danko, M., Mičušik, M., Pavlović, V. B., Milivojević, D., Kleinova, A., Špitalsky, Z.,& Todorović-Marković, B.. (2018). Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria. in RSC Advances, 8(55), 31337-31347.
https://doi.org/10.1039/C8RA04664F
Marković ZM, Jovanović SP, Mašković PZ, Danko M, Mičušik M, Pavlović VB, Milivojević D, Kleinova A, Špitalsky Z, Todorović-Marković B. Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria. in RSC Advances. 2018;8(55):31337-31347.
doi:10.1039/C8RA04664F .
Marković, Zoran M., Jovanović, Svetlana P., Mašković, Pavle Z., Danko, Martin, Mičušik, Matej, Pavlović, Vladimir B., Milivojević, Dušan, Kleinova, Angela, Špitalsky, Zdenko, Todorović-Marković, Biljana, "Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria" in RSC Advances, 8, no. 55 (2018):31337-31347,
https://doi.org/10.1039/C8RA04664F . .
1
71
25
66