Ministry of Education, Science, and Technological Development of the Republic of Serbia under project years 2020/2021

Link to this page

Ministry of Education, Science, and Technological Development of the Republic of Serbia under project years 2020/2021

Authors

Publications

Band Gap Engineering of Newly Discovered ZnO/ZnS Polytypic Nanomaterials

Zagorac, Dejan; Zagorac, Jelena B.; Pejić, Milan; Matović, Branko; Schön, Johann Christian

(2022)

TY  - JOUR
AU  - Zagorac, Dejan
AU  - Zagorac, Jelena B.
AU  - Pejić, Milan
AU  - Matović, Branko
AU  - Schön, Johann Christian
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10250
AB  - We report on a new class of ZnO/ZnS nanomaterials based on the wurtzite/sphalerite architecture with improved electronic properties. Semiconducting properties of pristine ZnO and ZnS compounds and mixed ZnO1−xSx nanomaterials have been investigated using ab initio methods. In particular, we present the results of our theoretical investigation on the electronic structure of the ZnO1−xSx (x = 0.20, 0.25, 0.33, 0.50, 0.60, 0.66, and 0.75) nanocrystalline polytypes (2H, 3C, 4H, 5H, 6H, 8H, 9R, 12R, and 15R) calculated using hybrid PBE0 and HSE06 functionals. The main observations are the possibility of alternative polytypic nanomaterials, the effects of structural features of such polytypic nanostructures on semiconducting properties of ZnO/ZnS nanomaterials, the ability to tune the band gap as a function of sulfur content, as well as the influence of the location of sulfur layers in the structure that can dramatically affect electronic properties. Our study opens new fields of ZnO/ZnS band gap engineering on a multi-scale level with possible applications in photovoltaics, light-emitting diodes, laser diodes, heterojunction solar cells, infrared detectors, thermoelectrics, or/and nanostructured ceramics.
T2  - Nanomaterials
T1  - Band Gap Engineering of Newly Discovered ZnO/ZnS Polytypic Nanomaterials
VL  - 12
IS  - 9
SP  - 1595
DO  - 10.3390/nano12091595
ER  - 
@article{
author = "Zagorac, Dejan and Zagorac, Jelena B. and Pejić, Milan and Matović, Branko and Schön, Johann Christian",
year = "2022",
abstract = "We report on a new class of ZnO/ZnS nanomaterials based on the wurtzite/sphalerite architecture with improved electronic properties. Semiconducting properties of pristine ZnO and ZnS compounds and mixed ZnO1−xSx nanomaterials have been investigated using ab initio methods. In particular, we present the results of our theoretical investigation on the electronic structure of the ZnO1−xSx (x = 0.20, 0.25, 0.33, 0.50, 0.60, 0.66, and 0.75) nanocrystalline polytypes (2H, 3C, 4H, 5H, 6H, 8H, 9R, 12R, and 15R) calculated using hybrid PBE0 and HSE06 functionals. The main observations are the possibility of alternative polytypic nanomaterials, the effects of structural features of such polytypic nanostructures on semiconducting properties of ZnO/ZnS nanomaterials, the ability to tune the band gap as a function of sulfur content, as well as the influence of the location of sulfur layers in the structure that can dramatically affect electronic properties. Our study opens new fields of ZnO/ZnS band gap engineering on a multi-scale level with possible applications in photovoltaics, light-emitting diodes, laser diodes, heterojunction solar cells, infrared detectors, thermoelectrics, or/and nanostructured ceramics.",
journal = "Nanomaterials",
title = "Band Gap Engineering of Newly Discovered ZnO/ZnS Polytypic Nanomaterials",
volume = "12",
number = "9",
pages = "1595",
doi = "10.3390/nano12091595"
}
Zagorac, D., Zagorac, J. B., Pejić, M., Matović, B.,& Schön, J. C.. (2022). Band Gap Engineering of Newly Discovered ZnO/ZnS Polytypic Nanomaterials. in Nanomaterials, 12(9), 1595.
https://doi.org/10.3390/nano12091595
Zagorac D, Zagorac JB, Pejić M, Matović B, Schön JC. Band Gap Engineering of Newly Discovered ZnO/ZnS Polytypic Nanomaterials. in Nanomaterials. 2022;12(9):1595.
doi:10.3390/nano12091595 .
Zagorac, Dejan, Zagorac, Jelena B., Pejić, Milan, Matović, Branko, Schön, Johann Christian, "Band Gap Engineering of Newly Discovered ZnO/ZnS Polytypic Nanomaterials" in Nanomaterials, 12, no. 9 (2022):1595,
https://doi.org/10.3390/nano12091595 . .
1
9
1
8