ERDF [ITMS 313011AVG3]

Link to this page

ERDF [ITMS 313011AVG3]

Authors

Publications

Design and preparation of proline, tryptophan and poly-l-lysine functionalized magnetic nanoparticles and their radiolabeling with 131I and 177Lu for potential theranostic use

Mirković, Marija D.; Milanović, Zorana; Perić, Marko R.; Vranješ-Đurić, Sanja; Ognjanović, Miloš; Antić, Bratislav; Kuraica, Milorad; Krstić, Ivan; Kubovcikova, Martina; Antal, Iryna; Sobotova, Radka; Zavisova, Vlasta; Jurikova, Alena; Fabian, Martin; Koneracka, Martina

(2022)

TY  - JOUR
AU  - Mirković, Marija D.
AU  - Milanović, Zorana
AU  - Perić, Marko R.
AU  - Vranješ-Đurić, Sanja
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
AU  - Kuraica, Milorad
AU  - Krstić, Ivan
AU  - Kubovcikova, Martina
AU  - Antal, Iryna
AU  - Sobotova, Radka
AU  - Zavisova, Vlasta
AU  - Jurikova, Alena
AU  - Fabian, Martin
AU  - Koneracka, Martina
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10696
AB  - Surface modification of magnetic nanoparticles with poly-L-lysine, proline, and tryptophan was used to design potential theranostic agents for the application in cancer diagnosis and radionuclide-hyperthermia therapy. Characterization of bare and functionalized magnetic nanoparticles was performed in detail. The transparency of the examined magnetic nanoparticles was measured in the non-alternating magnetic field for a complete and better understanding of hyperthermia. For the first time amino acid-functionalized magnetic nanoparticles were labeled with theranostic radionuclides 131I and 177Lu. The specific absorption rate (SAR) procured for poly-L-lysine functionalized magnetic nanoparticles (SAR values of 99.7 W/g at H0 = 15.9 kA/m and resonant frequency of 252 kHz) demonstrated their possible application in magnetic hyperthermia. Poly-L-lysine functionalized magnetic nanoparticles labeled with 177Lu showed the highest radiochemical purity (>99.00 %) and in vitro stability in saline and serum (>98.00 % up to 96 h). The in vivo analysis performed after their intravenous administration in healthy Wistar rats presented good in vivo stability for several days. Encouraging results as well as magnetic and radiochemical properties of 177Lu–PLL-MNPs (80 °C) justify their further testing toward the potential use as theranostic agents for diagnostic and combined radionuclide-hyperthermia therapeutic applications.
T2  - International Journal of Pharmaceutics
T1  - Design and preparation of proline, tryptophan and poly-l-lysine functionalized magnetic nanoparticles and their radiolabeling with 131I and 177Lu for potential theranostic use
VL  - 628
SP  - 122288
DO  - 10.1016/j.ijpharm.2022.122288
ER  - 
@article{
author = "Mirković, Marija D. and Milanović, Zorana and Perić, Marko R. and Vranješ-Đurić, Sanja and Ognjanović, Miloš and Antić, Bratislav and Kuraica, Milorad and Krstić, Ivan and Kubovcikova, Martina and Antal, Iryna and Sobotova, Radka and Zavisova, Vlasta and Jurikova, Alena and Fabian, Martin and Koneracka, Martina",
year = "2022",
abstract = "Surface modification of magnetic nanoparticles with poly-L-lysine, proline, and tryptophan was used to design potential theranostic agents for the application in cancer diagnosis and radionuclide-hyperthermia therapy. Characterization of bare and functionalized magnetic nanoparticles was performed in detail. The transparency of the examined magnetic nanoparticles was measured in the non-alternating magnetic field for a complete and better understanding of hyperthermia. For the first time amino acid-functionalized magnetic nanoparticles were labeled with theranostic radionuclides 131I and 177Lu. The specific absorption rate (SAR) procured for poly-L-lysine functionalized magnetic nanoparticles (SAR values of 99.7 W/g at H0 = 15.9 kA/m and resonant frequency of 252 kHz) demonstrated their possible application in magnetic hyperthermia. Poly-L-lysine functionalized magnetic nanoparticles labeled with 177Lu showed the highest radiochemical purity (>99.00 %) and in vitro stability in saline and serum (>98.00 % up to 96 h). The in vivo analysis performed after their intravenous administration in healthy Wistar rats presented good in vivo stability for several days. Encouraging results as well as magnetic and radiochemical properties of 177Lu–PLL-MNPs (80 °C) justify their further testing toward the potential use as theranostic agents for diagnostic and combined radionuclide-hyperthermia therapeutic applications.",
journal = "International Journal of Pharmaceutics",
title = "Design and preparation of proline, tryptophan and poly-l-lysine functionalized magnetic nanoparticles and their radiolabeling with 131I and 177Lu for potential theranostic use",
volume = "628",
pages = "122288",
doi = "10.1016/j.ijpharm.2022.122288"
}
Mirković, M. D., Milanović, Z., Perić, M. R., Vranješ-Đurić, S., Ognjanović, M., Antić, B., Kuraica, M., Krstić, I., Kubovcikova, M., Antal, I., Sobotova, R., Zavisova, V., Jurikova, A., Fabian, M.,& Koneracka, M.. (2022). Design and preparation of proline, tryptophan and poly-l-lysine functionalized magnetic nanoparticles and their radiolabeling with 131I and 177Lu for potential theranostic use. in International Journal of Pharmaceutics, 628, 122288.
https://doi.org/10.1016/j.ijpharm.2022.122288
Mirković MD, Milanović Z, Perić MR, Vranješ-Đurić S, Ognjanović M, Antić B, Kuraica M, Krstić I, Kubovcikova M, Antal I, Sobotova R, Zavisova V, Jurikova A, Fabian M, Koneracka M. Design and preparation of proline, tryptophan and poly-l-lysine functionalized magnetic nanoparticles and their radiolabeling with 131I and 177Lu for potential theranostic use. in International Journal of Pharmaceutics. 2022;628:122288.
doi:10.1016/j.ijpharm.2022.122288 .
Mirković, Marija D., Milanović, Zorana, Perić, Marko R., Vranješ-Đurić, Sanja, Ognjanović, Miloš, Antić, Bratislav, Kuraica, Milorad, Krstić, Ivan, Kubovcikova, Martina, Antal, Iryna, Sobotova, Radka, Zavisova, Vlasta, Jurikova, Alena, Fabian, Martin, Koneracka, Martina, "Design and preparation of proline, tryptophan and poly-l-lysine functionalized magnetic nanoparticles and their radiolabeling with 131I and 177Lu for potential theranostic use" in International Journal of Pharmaceutics, 628 (2022):122288,
https://doi.org/10.1016/j.ijpharm.2022.122288 . .
5
5