Serbia-China bilateral project [No. 451-02-818/2021-09/13]

Link to this page

Serbia-China bilateral project [No. 451-02-818/2021-09/13]

Authors

Publications

Co-Pyrolysis Process of Coal and Waste: Synergistic Effect and Influence of Microscale Conditions

Brat, Zagorka; Janković, Bojan; Stojiljković, Dragoslava; Vujanović, Milan; Wang, Xuebin; Manić, Nebojša

(SDEWES - International Centre for Sustainable Development of Energy, Water and Environment Systems, 2023)

TY  - CONF
AU  - Brat, Zagorka
AU  - Janković, Bojan
AU  - Stojiljković, Dragoslava
AU  - Vujanović, Milan
AU  - Wang, Xuebin
AU  - Manić, Nebojša
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12612
AB  - The pyrolysis process of two low-rank coals (lignite Kostolac and Kolubara), and two wastematerials (spent coffee ground and tyre rubber granulate) as well as their blends, have beenexamined by preliminary thermogravimetric analysis. Thermal decomposition experiments wereperformed in an N2 atmosphere on raw (pyrolysis) and blend (co-pyrolysis) samples at heatingrates of 10, 15, and 20 K min-1. The lignite-waste blend was created in the following masspercentage ratios 90:10, 80:20, and 70:30. Based on obtained experimental data, the stronginteractions were identified between the examined lignite and waste materials during copyrolysis,indicating the presence of a positive synergistic effect. The characteristics of the rawwaste sample and the heating rate were recognized as two key parameters that influenced thesynergy result with lignite sample, in lignite-spent coffee ground blends. For lignite-waste rubbergranulate blends, the blending ratio is critical for beneficial synergistic effect (ratios of wasterubber granulate with lignite less than 30% are preferred). The probable synergistic mechanismswere further explained using performed kinetic analysis by varying the effective activation energywith temperature and conversion. In addition, the influence of micro-scale conditioncharacteristics such as heating rate (as the experimental regulatory factor) on the magnituderesponse of synergistic effect during co-pyrolysis was also investigated in this work.
PB  - SDEWES - International Centre for Sustainable Development of Energy, Water and Environment Systems
PB  - Zagreb : Faculty of Mechanical Engineering and Naval Architecture
C3  - 18th Conference on Sustainable Development of Energy, Water and Environment Systems : Proceedings
T1  - Co-Pyrolysis Process of Coal and Waste: Synergistic Effect and Influence of Microscale Conditions
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12612
ER  - 
@conference{
author = "Brat, Zagorka and Janković, Bojan and Stojiljković, Dragoslava and Vujanović, Milan and Wang, Xuebin and Manić, Nebojša",
year = "2023",
abstract = "The pyrolysis process of two low-rank coals (lignite Kostolac and Kolubara), and two wastematerials (spent coffee ground and tyre rubber granulate) as well as their blends, have beenexamined by preliminary thermogravimetric analysis. Thermal decomposition experiments wereperformed in an N2 atmosphere on raw (pyrolysis) and blend (co-pyrolysis) samples at heatingrates of 10, 15, and 20 K min-1. The lignite-waste blend was created in the following masspercentage ratios 90:10, 80:20, and 70:30. Based on obtained experimental data, the stronginteractions were identified between the examined lignite and waste materials during copyrolysis,indicating the presence of a positive synergistic effect. The characteristics of the rawwaste sample and the heating rate were recognized as two key parameters that influenced thesynergy result with lignite sample, in lignite-spent coffee ground blends. For lignite-waste rubbergranulate blends, the blending ratio is critical for beneficial synergistic effect (ratios of wasterubber granulate with lignite less than 30% are preferred). The probable synergistic mechanismswere further explained using performed kinetic analysis by varying the effective activation energywith temperature and conversion. In addition, the influence of micro-scale conditioncharacteristics such as heating rate (as the experimental regulatory factor) on the magnituderesponse of synergistic effect during co-pyrolysis was also investigated in this work.",
publisher = "SDEWES - International Centre for Sustainable Development of Energy, Water and Environment Systems, Zagreb : Faculty of Mechanical Engineering and Naval Architecture",
journal = "18th Conference on Sustainable Development of Energy, Water and Environment Systems : Proceedings",
title = "Co-Pyrolysis Process of Coal and Waste: Synergistic Effect and Influence of Microscale Conditions",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12612"
}
Brat, Z., Janković, B., Stojiljković, D., Vujanović, M., Wang, X.,& Manić, N.. (2023). Co-Pyrolysis Process of Coal and Waste: Synergistic Effect and Influence of Microscale Conditions. in 18th Conference on Sustainable Development of Energy, Water and Environment Systems : Proceedings
SDEWES - International Centre for Sustainable Development of Energy, Water and Environment Systems..
https://hdl.handle.net/21.15107/rcub_vinar_12612
Brat Z, Janković B, Stojiljković D, Vujanović M, Wang X, Manić N. Co-Pyrolysis Process of Coal and Waste: Synergistic Effect and Influence of Microscale Conditions. in 18th Conference on Sustainable Development of Energy, Water and Environment Systems : Proceedings. 2023;.
https://hdl.handle.net/21.15107/rcub_vinar_12612 .
Brat, Zagorka, Janković, Bojan, Stojiljković, Dragoslava, Vujanović, Milan, Wang, Xuebin, Manić, Nebojša, "Co-Pyrolysis Process of Coal and Waste: Synergistic Effect and Influence of Microscale Conditions" in 18th Conference on Sustainable Development of Energy, Water and Environment Systems : Proceedings (2023),
https://hdl.handle.net/21.15107/rcub_vinar_12612 .