NSF-PREM [1523617]

Link to this page

NSF-PREM [1523617]

Authors

Publications

Synthesis and characterization of BaTiO3/α-Fe2O3 core/shell structure

Filipović, Suzana; Pavlović, Vera P.; Mitrić, Miodrag; Lević, Steva; Mitrović, Nebojša; Maričić, Aleksa; Vlahović, Branislav; Pavlović, Vladimir B.

(2019)

TY  - JOUR
AU  - Filipović, Suzana
AU  - Pavlović, Vera P.
AU  - Mitrić, Miodrag
AU  - Lević, Steva
AU  - Mitrović, Nebojša
AU  - Maričić, Aleksa
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - https://doi.org/10.1007/s40145-018-0301-5
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8103
AB  - Multiferroic materials attracted a lot of attention in recent years because of their significant scientific interest and technological applications. The multiferroic core/shell powders have a better connectivity between the phases, resulting in superior dielectric and magneto electric properties. In this study, the influence of preparation condition on structure and properties of BaTiO3/α-Fe2O3 core/shell composite materials was examined. The five samples were obtained by varying synthesis conditions, such as synthesized method (co-precipitation and sonochemical method) and pH values of solution. XRD and Raman spectroscopy analyses were performed in order to determine phase composition and structural changes within samples. Morphology modifications were examined by SEM and EDS analyses. Finally, effect of structural and microstructural changes on magnetic and electrical properties was detected and explained.
T2  - Journal of Advanced Ceramics
T1  - Synthesis and characterization of BaTiO3/α-Fe2O3 core/shell structure
VL  - 8
IS  - 1
SP  - 133
EP  - 147
DO  - 10.1007/s40145-018-0301-5
ER  - 
@article{
author = "Filipović, Suzana and Pavlović, Vera P. and Mitrić, Miodrag and Lević, Steva and Mitrović, Nebojša and Maričić, Aleksa and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2019",
abstract = "Multiferroic materials attracted a lot of attention in recent years because of their significant scientific interest and technological applications. The multiferroic core/shell powders have a better connectivity between the phases, resulting in superior dielectric and magneto electric properties. In this study, the influence of preparation condition on structure and properties of BaTiO3/α-Fe2O3 core/shell composite materials was examined. The five samples were obtained by varying synthesis conditions, such as synthesized method (co-precipitation and sonochemical method) and pH values of solution. XRD and Raman spectroscopy analyses were performed in order to determine phase composition and structural changes within samples. Morphology modifications were examined by SEM and EDS analyses. Finally, effect of structural and microstructural changes on magnetic and electrical properties was detected and explained.",
journal = "Journal of Advanced Ceramics",
title = "Synthesis and characterization of BaTiO3/α-Fe2O3 core/shell structure",
volume = "8",
number = "1",
pages = "133-147",
doi = "10.1007/s40145-018-0301-5"
}
Filipović, S., Pavlović, V. P., Mitrić, M., Lević, S., Mitrović, N., Maričić, A., Vlahović, B.,& Pavlović, V. B.. (2019). Synthesis and characterization of BaTiO3/α-Fe2O3 core/shell structure. in Journal of Advanced Ceramics, 8(1), 133-147.
https://doi.org/10.1007/s40145-018-0301-5
Filipović S, Pavlović VP, Mitrić M, Lević S, Mitrović N, Maričić A, Vlahović B, Pavlović VB. Synthesis and characterization of BaTiO3/α-Fe2O3 core/shell structure. in Journal of Advanced Ceramics. 2019;8(1):133-147.
doi:10.1007/s40145-018-0301-5 .
Filipović, Suzana, Pavlović, Vera P., Mitrić, Miodrag, Lević, Steva, Mitrović, Nebojša, Maričić, Aleksa, Vlahović, Branislav, Pavlović, Vladimir B., "Synthesis and characterization of BaTiO3/α-Fe2O3 core/shell structure" in Journal of Advanced Ceramics, 8, no. 1 (2019):133-147,
https://doi.org/10.1007/s40145-018-0301-5 . .
1
9
9
11