Ministry of Education, Science and Sport of the Republic of Slovenia [2.1-KI-952007]

Link to this page

Ministry of Education, Science and Sport of the Republic of Slovenia [2.1-KI-952007]

Authors

Publications

High-surface-area organic matrix tris(aza)pentacene supported platinum nanostructures as selective electrocatalyst for hydrogen oxidation/evolution reaction and suppressive for oxygen reduction reaction

Vélez Santa, John Fredy; Menart, Svit; Bele, Marjan; Ruiz-Zepeda, Francisco; Jovanovič, Primož; Jovanovski, Vasko; Šala, Martin; Smiljanić, Milutin Lj.; Hodnik, Nejc

(2021)

TY  - JOUR
AU  - Vélez Santa, John Fredy
AU  - Menart, Svit
AU  - Bele, Marjan
AU  - Ruiz-Zepeda, Francisco
AU  - Jovanovič, Primož
AU  - Jovanovski, Vasko
AU  - Šala, Martin
AU  - Smiljanić, Milutin Lj.
AU  - Hodnik, Nejc
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9844
AB  - Developing a Pt-based electrocatalytic material able to selectively catalyze hydrogen oxidation (HOR) while supressing oxygen reduction (ORR) is beneficial for durability of the fuel cells. Namely, degradation of carbon supported Pt particles is dramatically influenced by the unwanted ORR enrolling at the anode due to the air penetration during start-up/shut-down events. We present an organic matrix tris(aza)pentacene (TAP), which belongs to π-functional materials with ladder-like conjugated nitrogen-containing units, as the support for Pt to form a “smart” fuel cell anode able to selectively catalyze HOR and to suppress ORR. “Switching-on/off” of the composite material activity is provided by reversible reduction/oxidation of the TAP in the low potential region which provokes TAP - HxTAP transition. Conductivity of the reduced HxTAP enables supported Pt particles to effectively run HOR. In contrast, restricted conductivity of oxidized TAP analogue leads to the substantial drop in the ORR activity with respect to benchmark Pt/C catalyst.
T2  - International Journal of Hydrogen Energy
T1  - High-surface-area organic matrix tris(aza)pentacene supported platinum nanostructures as selective electrocatalyst for hydrogen oxidation/evolution reaction and suppressive for oxygen reduction reaction
VL  - 46
IS  - 49
SP  - 25039
EP  - 25049
DO  - 10.1016/j.ijhydene.2021.05.041
ER  - 
@article{
author = "Vélez Santa, John Fredy and Menart, Svit and Bele, Marjan and Ruiz-Zepeda, Francisco and Jovanovič, Primož and Jovanovski, Vasko and Šala, Martin and Smiljanić, Milutin Lj. and Hodnik, Nejc",
year = "2021",
abstract = "Developing a Pt-based electrocatalytic material able to selectively catalyze hydrogen oxidation (HOR) while supressing oxygen reduction (ORR) is beneficial for durability of the fuel cells. Namely, degradation of carbon supported Pt particles is dramatically influenced by the unwanted ORR enrolling at the anode due to the air penetration during start-up/shut-down events. We present an organic matrix tris(aza)pentacene (TAP), which belongs to π-functional materials with ladder-like conjugated nitrogen-containing units, as the support for Pt to form a “smart” fuel cell anode able to selectively catalyze HOR and to suppress ORR. “Switching-on/off” of the composite material activity is provided by reversible reduction/oxidation of the TAP in the low potential region which provokes TAP - HxTAP transition. Conductivity of the reduced HxTAP enables supported Pt particles to effectively run HOR. In contrast, restricted conductivity of oxidized TAP analogue leads to the substantial drop in the ORR activity with respect to benchmark Pt/C catalyst.",
journal = "International Journal of Hydrogen Energy",
title = "High-surface-area organic matrix tris(aza)pentacene supported platinum nanostructures as selective electrocatalyst for hydrogen oxidation/evolution reaction and suppressive for oxygen reduction reaction",
volume = "46",
number = "49",
pages = "25039-25049",
doi = "10.1016/j.ijhydene.2021.05.041"
}
Vélez Santa, J. F., Menart, S., Bele, M., Ruiz-Zepeda, F., Jovanovič, P., Jovanovski, V., Šala, M., Smiljanić, M. Lj.,& Hodnik, N.. (2021). High-surface-area organic matrix tris(aza)pentacene supported platinum nanostructures as selective electrocatalyst for hydrogen oxidation/evolution reaction and suppressive for oxygen reduction reaction. in International Journal of Hydrogen Energy, 46(49), 25039-25049.
https://doi.org/10.1016/j.ijhydene.2021.05.041
Vélez Santa JF, Menart S, Bele M, Ruiz-Zepeda F, Jovanovič P, Jovanovski V, Šala M, Smiljanić ML, Hodnik N. High-surface-area organic matrix tris(aza)pentacene supported platinum nanostructures as selective electrocatalyst for hydrogen oxidation/evolution reaction and suppressive for oxygen reduction reaction. in International Journal of Hydrogen Energy. 2021;46(49):25039-25049.
doi:10.1016/j.ijhydene.2021.05.041 .
Vélez Santa, John Fredy, Menart, Svit, Bele, Marjan, Ruiz-Zepeda, Francisco, Jovanovič, Primož, Jovanovski, Vasko, Šala, Martin, Smiljanić, Milutin Lj., Hodnik, Nejc, "High-surface-area organic matrix tris(aza)pentacene supported platinum nanostructures as selective electrocatalyst for hydrogen oxidation/evolution reaction and suppressive for oxygen reduction reaction" in International Journal of Hydrogen Energy, 46, no. 49 (2021):25039-25049,
https://doi.org/10.1016/j.ijhydene.2021.05.041 . .
2
5
1
5