Studying signal transduction pathways and epigenetic mechanisms that control human SOX genes expression: further insight into their roles in cell fate determination and differentiation

Link to this page

info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/173051/RS//

Studying signal transduction pathways and epigenetic mechanisms that control human SOX genes expression: further insight into their roles in cell fate determination and differentiation (en)
Проучавање сигналних путева и епигенетичких механизама укључених у контролу експресије хуманих SOX гена: даље расветљавање њихове улоге у одређивању судбине и диференцијацији ћелија (sr)
Proučavanje signalnih puteva i epigenetičkih mehanizama uključenih u kontrolu ekspresije humanih SOX gena: dalje rasvetljavanje njihove uloge u određivanju sudbine i diferencijaciji ćelija (sr_RS)
Authors

Publications

Graphene quantum dots as singlet oxygen producer or radical quencher - The matter of functionalization with urea/thiourea

Jovanović, Svetlana P.; Syrgiannis, Zois; Budimir, Milica; Milivojević, Dušan; Jovanović, Dragana J.; Pavlović, Vladimir B.; Papan, Jelena; Bartenwerfer, Malte; Mojsin, Marija; Stevanović, Milena J.; Todorović-Marković, Biljana

(2020)

TY  - JOUR
AU  - Jovanović, Svetlana P.
AU  - Syrgiannis, Zois
AU  - Budimir, Milica
AU  - Milivojević, Dušan
AU  - Jovanović, Dragana J.
AU  - Pavlović, Vladimir B.
AU  - Papan, Jelena
AU  - Bartenwerfer, Malte
AU  - Mojsin, Marija
AU  - Stevanović, Milena J.
AU  - Todorović-Marković, Biljana
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8672
AB  - Due to their low cost and possible green synthesis, high stability and resistance to photobleaching, graphene quantum dots (GQDs) can be considered as one of the class of carbon nanomaterials which may have great potential as an agent for photosensitized oxygen activation. In such a way, GQDs can be used as a theranostic agent in photodynamic therapy. In this work pristine GQDs, GQDs irradiated with gamma rays and GQDs doped with N and N, S atoms are produced using a simple, green approach. By using different techniques (AFM, HR-TEM, SEM-EDS, FTIR, XRD, PL and UV–Vis) we investigated structural and optical properties of the new types of GQDs. We showed that GQDs functionalized with thiourea (GQDs-TU) completely lost the ability to produce singlet oxygen (1O2) upon photoexcitation while functionalization with urea (GQDs-U) improves the capability of GQDs to produce 1O2 upon the same conditions. Thus, presented GQDs modification with urea seems like a promising approach for the production of the efficient photosensitizer. On the opposite, GQDs-TU are efficient [rad]OH quencher. Due to high singlet oxygen production and low cytotoxicity below 100 μg/mL against HeLa cells, GQDs-U is a good candidate as an agent in photodynamic therapy at this concentration. © 2019
T2  - Materials Science and Engineering: C
T1  - Graphene quantum dots as singlet oxygen producer or radical quencher - The matter of functionalization with urea/thiourea
VL  - 109
SP  - 110539
DO  - 10.1016/j.msec.2019.110539
ER  - 
@article{
author = "Jovanović, Svetlana P. and Syrgiannis, Zois and Budimir, Milica and Milivojević, Dušan and Jovanović, Dragana J. and Pavlović, Vladimir B. and Papan, Jelena and Bartenwerfer, Malte and Mojsin, Marija and Stevanović, Milena J. and Todorović-Marković, Biljana",
year = "2020",
abstract = "Due to their low cost and possible green synthesis, high stability and resistance to photobleaching, graphene quantum dots (GQDs) can be considered as one of the class of carbon nanomaterials which may have great potential as an agent for photosensitized oxygen activation. In such a way, GQDs can be used as a theranostic agent in photodynamic therapy. In this work pristine GQDs, GQDs irradiated with gamma rays and GQDs doped with N and N, S atoms are produced using a simple, green approach. By using different techniques (AFM, HR-TEM, SEM-EDS, FTIR, XRD, PL and UV–Vis) we investigated structural and optical properties of the new types of GQDs. We showed that GQDs functionalized with thiourea (GQDs-TU) completely lost the ability to produce singlet oxygen (1O2) upon photoexcitation while functionalization with urea (GQDs-U) improves the capability of GQDs to produce 1O2 upon the same conditions. Thus, presented GQDs modification with urea seems like a promising approach for the production of the efficient photosensitizer. On the opposite, GQDs-TU are efficient [rad]OH quencher. Due to high singlet oxygen production and low cytotoxicity below 100 μg/mL against HeLa cells, GQDs-U is a good candidate as an agent in photodynamic therapy at this concentration. © 2019",
journal = "Materials Science and Engineering: C",
title = "Graphene quantum dots as singlet oxygen producer or radical quencher - The matter of functionalization with urea/thiourea",
volume = "109",
pages = "110539",
doi = "10.1016/j.msec.2019.110539"
}
Jovanović, S. P., Syrgiannis, Z., Budimir, M., Milivojević, D., Jovanović, D. J., Pavlović, V. B., Papan, J., Bartenwerfer, M., Mojsin, M., Stevanović, M. J.,& Todorović-Marković, B.. (2020). Graphene quantum dots as singlet oxygen producer or radical quencher - The matter of functionalization with urea/thiourea. in Materials Science and Engineering: C, 109, 110539.
https://doi.org/10.1016/j.msec.2019.110539
Jovanović SP, Syrgiannis Z, Budimir M, Milivojević D, Jovanović DJ, Pavlović VB, Papan J, Bartenwerfer M, Mojsin M, Stevanović MJ, Todorović-Marković B. Graphene quantum dots as singlet oxygen producer or radical quencher - The matter of functionalization with urea/thiourea. in Materials Science and Engineering: C. 2020;109:110539.
doi:10.1016/j.msec.2019.110539 .
Jovanović, Svetlana P., Syrgiannis, Zois, Budimir, Milica, Milivojević, Dušan, Jovanović, Dragana J., Pavlović, Vladimir B., Papan, Jelena, Bartenwerfer, Malte, Mojsin, Marija, Stevanović, Milena J., Todorović-Marković, Biljana, "Graphene quantum dots as singlet oxygen producer or radical quencher - The matter of functionalization with urea/thiourea" in Materials Science and Engineering: C, 109 (2020):110539,
https://doi.org/10.1016/j.msec.2019.110539 . .
42
15
37

Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines

Marković, Zoran M.; Jovanović, Svetlana P.; Mašković, Pavle Z.; Mojsin, Marija; Stevanović, Milena J.; Danko, Martin; Mičušik, Matej; Jovanović, Dragana J.; Kleinova, Angela; Špitalsky, Zdeno; Pavlović, Vladimir B.; Todorović-Marković, Biljana

(2019)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Jovanović, Svetlana P.
AU  - Mašković, Pavle Z.
AU  - Mojsin, Marija
AU  - Stevanović, Milena J.
AU  - Danko, Martin
AU  - Mičušik, Matej
AU  - Jovanović, Dragana J.
AU  - Kleinova, Angela
AU  - Špitalsky, Zdeno
AU  - Pavlović, Vladimir B.
AU  - Todorović-Marković, Biljana
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8591
AB  - Photoactive materials called photosensitizers can be used for treatment of different types of cancer in combination with light source. In this paper, we have investigated pro-oxidant and antioxidant potentials of four graphene based nanomaterials (graphene oxide-GO, graphene quantum dots-GQDs, carbon quantum dots-CQDs and N-doped carbon quantum dots-N-CQDs) depending on the presence/absence of visible light source. Structural and optical properties of these materials and their potentials for reactive oxygen species generation/quenching are investigated by applying different microscopy and spectroscopy techniques (transmission electron microscopy, FTIR, UV–Vis, photoluminescence, electron paramagnetic resonance). Results show that all types of quantum dots has pro-oxidant and antioxidant potentials whereas GO demonstrated only moderate antioxidant effect. The best free radical scavenger is CQDs sample in the absence of light. CQDs are the best singlet oxygen generator under blue light irradiation as well. To check photo-cytotoxicity of these materials, photo-cytotoxic concentrations of the GO, GQDs, CQDs and N-CQDs were determined for three cellular lines: human rhabdomyosarcoma (RD), cell line derived from human cervix carcinoma Hep2c (HeLa) and fibroblast cell line from murine (L2OB). Cytotoxicity test has indicated that all samples are much less photocytotoxic than cis-diamminedichloroplatinum (cis-DPP). The production method and doping of quantum dots affect the photodynamic activity of tested samples very much.
T2  - Journal of Photochemistry and Photobiology B: Biology
T1  - Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines
VL  - 200
SP  - 111647
DO  - 10.1016/j.jphotobiol.2019.111647
ER  - 
@article{
author = "Marković, Zoran M. and Jovanović, Svetlana P. and Mašković, Pavle Z. and Mojsin, Marija and Stevanović, Milena J. and Danko, Martin and Mičušik, Matej and Jovanović, Dragana J. and Kleinova, Angela and Špitalsky, Zdeno and Pavlović, Vladimir B. and Todorović-Marković, Biljana",
year = "2019",
abstract = "Photoactive materials called photosensitizers can be used for treatment of different types of cancer in combination with light source. In this paper, we have investigated pro-oxidant and antioxidant potentials of four graphene based nanomaterials (graphene oxide-GO, graphene quantum dots-GQDs, carbon quantum dots-CQDs and N-doped carbon quantum dots-N-CQDs) depending on the presence/absence of visible light source. Structural and optical properties of these materials and their potentials for reactive oxygen species generation/quenching are investigated by applying different microscopy and spectroscopy techniques (transmission electron microscopy, FTIR, UV–Vis, photoluminescence, electron paramagnetic resonance). Results show that all types of quantum dots has pro-oxidant and antioxidant potentials whereas GO demonstrated only moderate antioxidant effect. The best free radical scavenger is CQDs sample in the absence of light. CQDs are the best singlet oxygen generator under blue light irradiation as well. To check photo-cytotoxicity of these materials, photo-cytotoxic concentrations of the GO, GQDs, CQDs and N-CQDs were determined for three cellular lines: human rhabdomyosarcoma (RD), cell line derived from human cervix carcinoma Hep2c (HeLa) and fibroblast cell line from murine (L2OB). Cytotoxicity test has indicated that all samples are much less photocytotoxic than cis-diamminedichloroplatinum (cis-DPP). The production method and doping of quantum dots affect the photodynamic activity of tested samples very much.",
journal = "Journal of Photochemistry and Photobiology B: Biology",
title = "Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines",
volume = "200",
pages = "111647",
doi = "10.1016/j.jphotobiol.2019.111647"
}
Marković, Z. M., Jovanović, S. P., Mašković, P. Z., Mojsin, M., Stevanović, M. J., Danko, M., Mičušik, M., Jovanović, D. J., Kleinova, A., Špitalsky, Z., Pavlović, V. B.,& Todorović-Marković, B.. (2019). Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines. in Journal of Photochemistry and Photobiology B: Biology, 200, 111647.
https://doi.org/10.1016/j.jphotobiol.2019.111647
Marković ZM, Jovanović SP, Mašković PZ, Mojsin M, Stevanović MJ, Danko M, Mičušik M, Jovanović DJ, Kleinova A, Špitalsky Z, Pavlović VB, Todorović-Marković B. Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines. in Journal of Photochemistry and Photobiology B: Biology. 2019;200:111647.
doi:10.1016/j.jphotobiol.2019.111647 .
Marković, Zoran M., Jovanović, Svetlana P., Mašković, Pavle Z., Mojsin, Marija, Stevanović, Milena J., Danko, Martin, Mičušik, Matej, Jovanović, Dragana J., Kleinova, Angela, Špitalsky, Zdeno, Pavlović, Vladimir B., Todorović-Marković, Biljana, "Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines" in Journal of Photochemistry and Photobiology B: Biology, 200 (2019):111647,
https://doi.org/10.1016/j.jphotobiol.2019.111647 . .
39
10
38

Subregion-specific Protective Effects of Fluoxetine and Clozapine on Parvalbumin Expression in Medial Prefrontal Cortex of Chronically Isolated Rats

Todorović, Nevena; Mićić, Bojana; Schwirtlich, Marija; Stevanović, Milena J.; Filipović, Dragana

(2019)

TY  - JOUR
AU  - Todorović, Nevena
AU  - Mićić, Bojana
AU  - Schwirtlich, Marija
AU  - Stevanović, Milena J.
AU  - Filipović, Dragana
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0306452218307322
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7982
AB  - Dysregulation of GABAergic system is becoming increasingly associated with depression, psychiatric disorder that imposes severe clinical, social and economic burden. Special attention is paid to the fast-spiking parvalbumin-positive (PV+) interneurons, GABAergic neurons which are highly susceptible to redox dysregulation and oxidative stress and implicated in a variety of psychiatric diseases. Here we analyzed the number of PV+ and cleaved caspase-3-positive (CC3+) cells in the rat medial prefrontal cortical (mPFC) subregions following chronic social isolation (CSIS), an animal model of depression and schizophrenia. Also, we examined potential protective effects of antidepressant fluoxetine (FLX) and atypical antipsychotic clozapine (CLZ) on the number of these cells in mPFC subregions, when applied parallel with CSIS in doses that correspond to therapeutically effective ones in patients. Immunofluorescence analysis revealed decreased number of PV+ cells in cingulate cortex area 1, prelimbic area (PrL), infralimbic area (IL) and dorsal peduncular cortex of the mPFC in isolated rats, which coincided with depressive- and anxiety-like behaviors. In addition, CSIS-induced increase in the number of CC3+ cells was detected in aforementioned subregions of mPFC. Treatments with either FLX or CLZ prevented behavioral changes, decrease in PV+ and increase in CC3+ cell numbers in PrL and IL subregions in isolated rats. These results indicate the importance of intact GABAergic signaling in these areas for resistance against CSIS-induced behavioral changes, as well as subregion-specific protective effects of FLX and CLZ in mPFC of CSIS rats. © 2018 IBRO
T2  - Neuroscience
T1  - Subregion-specific Protective Effects of Fluoxetine and Clozapine on Parvalbumin Expression in Medial Prefrontal Cortex of Chronically Isolated Rats
VL  - 396
SP  - 24
EP  - 35
DO  - 10.1016/j.neuroscience.2018.11.008
ER  - 
@article{
author = "Todorović, Nevena and Mićić, Bojana and Schwirtlich, Marija and Stevanović, Milena J. and Filipović, Dragana",
year = "2019",
abstract = "Dysregulation of GABAergic system is becoming increasingly associated with depression, psychiatric disorder that imposes severe clinical, social and economic burden. Special attention is paid to the fast-spiking parvalbumin-positive (PV+) interneurons, GABAergic neurons which are highly susceptible to redox dysregulation and oxidative stress and implicated in a variety of psychiatric diseases. Here we analyzed the number of PV+ and cleaved caspase-3-positive (CC3+) cells in the rat medial prefrontal cortical (mPFC) subregions following chronic social isolation (CSIS), an animal model of depression and schizophrenia. Also, we examined potential protective effects of antidepressant fluoxetine (FLX) and atypical antipsychotic clozapine (CLZ) on the number of these cells in mPFC subregions, when applied parallel with CSIS in doses that correspond to therapeutically effective ones in patients. Immunofluorescence analysis revealed decreased number of PV+ cells in cingulate cortex area 1, prelimbic area (PrL), infralimbic area (IL) and dorsal peduncular cortex of the mPFC in isolated rats, which coincided with depressive- and anxiety-like behaviors. In addition, CSIS-induced increase in the number of CC3+ cells was detected in aforementioned subregions of mPFC. Treatments with either FLX or CLZ prevented behavioral changes, decrease in PV+ and increase in CC3+ cell numbers in PrL and IL subregions in isolated rats. These results indicate the importance of intact GABAergic signaling in these areas for resistance against CSIS-induced behavioral changes, as well as subregion-specific protective effects of FLX and CLZ in mPFC of CSIS rats. © 2018 IBRO",
journal = "Neuroscience",
title = "Subregion-specific Protective Effects of Fluoxetine and Clozapine on Parvalbumin Expression in Medial Prefrontal Cortex of Chronically Isolated Rats",
volume = "396",
pages = "24-35",
doi = "10.1016/j.neuroscience.2018.11.008"
}
Todorović, N., Mićić, B., Schwirtlich, M., Stevanović, M. J.,& Filipović, D.. (2019). Subregion-specific Protective Effects of Fluoxetine and Clozapine on Parvalbumin Expression in Medial Prefrontal Cortex of Chronically Isolated Rats. in Neuroscience, 396, 24-35.
https://doi.org/10.1016/j.neuroscience.2018.11.008
Todorović N, Mićić B, Schwirtlich M, Stevanović MJ, Filipović D. Subregion-specific Protective Effects of Fluoxetine and Clozapine on Parvalbumin Expression in Medial Prefrontal Cortex of Chronically Isolated Rats. in Neuroscience. 2019;396:24-35.
doi:10.1016/j.neuroscience.2018.11.008 .
Todorović, Nevena, Mićić, Bojana, Schwirtlich, Marija, Stevanović, Milena J., Filipović, Dragana, "Subregion-specific Protective Effects of Fluoxetine and Clozapine on Parvalbumin Expression in Medial Prefrontal Cortex of Chronically Isolated Rats" in Neuroscience, 396 (2019):24-35,
https://doi.org/10.1016/j.neuroscience.2018.11.008 . .
26
14
23