Serbian-Slovenian bilateral project [BI-RS/16-17-030]

Link to this page

Serbian-Slovenian bilateral project [BI-RS/16-17-030]

Authors

Publications

Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties

Tadić, Marin; Trpkov, Đorđe; Kopanja, Lazar; Vojnović, Sandra; Panjan, Matjaž

(2019)

TY  - JOUR
AU  - Tadić, Marin
AU  - Trpkov, Đorđe
AU  - Kopanja, Lazar
AU  - Vojnović, Sandra
AU  - Panjan, Matjaž
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0925838819312587
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8133
AB  - In this work, we present the magnetic and structural properties of α-Fe 2 O 3 nanoparticles synthesized by the hydrothermal synthesis method. XRD, FTIR and Raman spectroscopy indicate that the samples consist of single-phase α-Fe 2 O 3 nanoparticles. A microstructural analysis by TEM and SEM shows: (i) irregular nanoparticles (∼50 nm), (ii) plate-like nanoparticles (with thickness t∼10 nm and diameter d∼50–80 nm) and (iii) microsized ellipsoid 3D superstructures (with length l∼3.5 and diameter d∼1.5 μm) composed of nanosized building blocks (∼50 nm). We used circularity, elongation and convexity measures to quantitatively analyze the shape of the particles. Irregular hematite nanoparticles were synthesized using a water solution of ferric precursor and sodium acetate during the hydrothermal reaction (reaction conditions: T = 180 °C, t = 12 h). The same hydrothermal reaction temperature, reaction duration and ferric precursor (without sodium acetate) were used for synthesizing hematite ellipsoid 3D superstructures. Addition of urea and glycine surfactants in hydrothermal reaction resulted in the formation of nanoplate hematite particles. The role of these surfactants on the structure and morphology of the particles was also investigated. Magnetic measurements at the room temperature displayed a wide range of coercivities, from H C = 73 Oe for irregular nanoparticles, H C = 689 Oe for nanoplates to H C = 2688 Oe for hematite ellipsoid 3D superstructures. The measured coercivity for the ellipsoid superstructure was about 35 times higher than in the case of irregular hematite nanoparticles and about 4 times than the coercivity of hematite nanoplates. Magnetic properties of synthesized samples were related to their structure and morphology. We conclude that shape anisotropy influenced enhancement of the coercivity in hematite nanoplates whereas hematite ellipsoid 3D superstructure (nanoparticle clusters) induced the formation of multidomain magnetic structure and highest coercivity revealing its superior structure for enhanced magnetic properties. The synthesized hematite nanoparticle structures exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating a safe use of these nanoparticles for practical applications. © 2019 Elsevier B.V.
T2  - Journal of Alloys and Compounds
T1  - Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties
VL  - 792
SP  - 599
EP  - 609
DO  - 10.1016/j.jallcom.2019.03.414
ER  - 
@article{
author = "Tadić, Marin and Trpkov, Đorđe and Kopanja, Lazar and Vojnović, Sandra and Panjan, Matjaž",
year = "2019",
abstract = "In this work, we present the magnetic and structural properties of α-Fe 2 O 3 nanoparticles synthesized by the hydrothermal synthesis method. XRD, FTIR and Raman spectroscopy indicate that the samples consist of single-phase α-Fe 2 O 3 nanoparticles. A microstructural analysis by TEM and SEM shows: (i) irregular nanoparticles (∼50 nm), (ii) plate-like nanoparticles (with thickness t∼10 nm and diameter d∼50–80 nm) and (iii) microsized ellipsoid 3D superstructures (with length l∼3.5 and diameter d∼1.5 μm) composed of nanosized building blocks (∼50 nm). We used circularity, elongation and convexity measures to quantitatively analyze the shape of the particles. Irregular hematite nanoparticles were synthesized using a water solution of ferric precursor and sodium acetate during the hydrothermal reaction (reaction conditions: T = 180 °C, t = 12 h). The same hydrothermal reaction temperature, reaction duration and ferric precursor (without sodium acetate) were used for synthesizing hematite ellipsoid 3D superstructures. Addition of urea and glycine surfactants in hydrothermal reaction resulted in the formation of nanoplate hematite particles. The role of these surfactants on the structure and morphology of the particles was also investigated. Magnetic measurements at the room temperature displayed a wide range of coercivities, from H C = 73 Oe for irregular nanoparticles, H C = 689 Oe for nanoplates to H C = 2688 Oe for hematite ellipsoid 3D superstructures. The measured coercivity for the ellipsoid superstructure was about 35 times higher than in the case of irregular hematite nanoparticles and about 4 times than the coercivity of hematite nanoplates. Magnetic properties of synthesized samples were related to their structure and morphology. We conclude that shape anisotropy influenced enhancement of the coercivity in hematite nanoplates whereas hematite ellipsoid 3D superstructure (nanoparticle clusters) induced the formation of multidomain magnetic structure and highest coercivity revealing its superior structure for enhanced magnetic properties. The synthesized hematite nanoparticle structures exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating a safe use of these nanoparticles for practical applications. © 2019 Elsevier B.V.",
journal = "Journal of Alloys and Compounds",
title = "Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties",
volume = "792",
pages = "599-609",
doi = "10.1016/j.jallcom.2019.03.414"
}
Tadić, M., Trpkov, Đ., Kopanja, L., Vojnović, S.,& Panjan, M.. (2019). Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties. in Journal of Alloys and Compounds, 792, 599-609.
https://doi.org/10.1016/j.jallcom.2019.03.414
Tadić M, Trpkov Đ, Kopanja L, Vojnović S, Panjan M. Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties. in Journal of Alloys and Compounds. 2019;792:599-609.
doi:10.1016/j.jallcom.2019.03.414 .
Tadić, Marin, Trpkov, Đorđe, Kopanja, Lazar, Vojnović, Sandra, Panjan, Matjaž, "Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties" in Journal of Alloys and Compounds, 792 (2019):599-609,
https://doi.org/10.1016/j.jallcom.2019.03.414 . .
159
67
143

Re-formation of metastable epsilon-Fe2O3 in post-annealing of Fe2O3/SiO2 nanostructure: Synthesis, computational particle shape analysis in micrographs and magnetic properties

Nikolić, Violeta N.; Spasojević, Vojislav; Panjan, Matjaž; Kopanja, Lazar; Mraković, Ana Đ.; Tadić, Marin

(2017)

TY  - JOUR
AU  - Nikolić, Violeta N.
AU  - Spasojević, Vojislav
AU  - Panjan, Matjaž
AU  - Kopanja, Lazar
AU  - Mraković, Ana Đ.
AU  - Tadić, Marin
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1559
AB  - Several Fe2O3/SiO2 nanostructures were synthesized by the combination of the microemulsion and a sol-gel methods. Based on X-ray powder diffraction (XRD) and magnetic measurements (giant coercivity similar to 2.13 T) we identified epsilon-Fe2O3 (hard magnet) as the dominant crystalline phase. TEM analysis showed a wide size distribution of iron oxide nanoparticles (from 4 to 50 nm) with various morphologies (spherical, ellipsoidal and rod-like). We quantitatively described (computational analysis, MATLAB code) morphological properties of nanoparticles using the ellipticity of the shapes. The as-synthesized hard magnetic material was subjected to a post-annealing treatment at different temperatures (200, 500, 750, 1000 and 1100 degrees C) in order to investigate stability, formation and transformation of the epsilon-Fe2O3 polymorph. We found decreasing coercivity in the thermally treated samples up to the temperature of 750 degrees C (H-c=1245 Oe), followed by an observation of a surprising jump in coercivity H-c similar to 1.5 T after post-annealing at 1000 degrees C. We conclude that the re-formation of the epsilon-Fe2O3 structure during post-annealing at 1000 degrees C is the origin of the observed phenomena. The phase transformation epsilon-Fe2O3 - GT alpha-Fe2O3 and crystallization of amorphous silica in quartz and cristobalite were observed in the sample treated at 1100 degrees C.
T2  - Ceramics International
T1  - Re-formation of metastable epsilon-Fe2O3 in post-annealing of Fe2O3/SiO2 nanostructure: Synthesis, computational particle shape analysis in micrographs and magnetic properties
VL  - 43
IS  - 10
SP  - 7497
EP  - 7507
DO  - 10.1016/j.ceramint.2017.03.030
ER  - 
@article{
author = "Nikolić, Violeta N. and Spasojević, Vojislav and Panjan, Matjaž and Kopanja, Lazar and Mraković, Ana Đ. and Tadić, Marin",
year = "2017",
abstract = "Several Fe2O3/SiO2 nanostructures were synthesized by the combination of the microemulsion and a sol-gel methods. Based on X-ray powder diffraction (XRD) and magnetic measurements (giant coercivity similar to 2.13 T) we identified epsilon-Fe2O3 (hard magnet) as the dominant crystalline phase. TEM analysis showed a wide size distribution of iron oxide nanoparticles (from 4 to 50 nm) with various morphologies (spherical, ellipsoidal and rod-like). We quantitatively described (computational analysis, MATLAB code) morphological properties of nanoparticles using the ellipticity of the shapes. The as-synthesized hard magnetic material was subjected to a post-annealing treatment at different temperatures (200, 500, 750, 1000 and 1100 degrees C) in order to investigate stability, formation and transformation of the epsilon-Fe2O3 polymorph. We found decreasing coercivity in the thermally treated samples up to the temperature of 750 degrees C (H-c=1245 Oe), followed by an observation of a surprising jump in coercivity H-c similar to 1.5 T after post-annealing at 1000 degrees C. We conclude that the re-formation of the epsilon-Fe2O3 structure during post-annealing at 1000 degrees C is the origin of the observed phenomena. The phase transformation epsilon-Fe2O3 - GT alpha-Fe2O3 and crystallization of amorphous silica in quartz and cristobalite were observed in the sample treated at 1100 degrees C.",
journal = "Ceramics International",
title = "Re-formation of metastable epsilon-Fe2O3 in post-annealing of Fe2O3/SiO2 nanostructure: Synthesis, computational particle shape analysis in micrographs and magnetic properties",
volume = "43",
number = "10",
pages = "7497-7507",
doi = "10.1016/j.ceramint.2017.03.030"
}
Nikolić, V. N., Spasojević, V., Panjan, M., Kopanja, L., Mraković, A. Đ.,& Tadić, M.. (2017). Re-formation of metastable epsilon-Fe2O3 in post-annealing of Fe2O3/SiO2 nanostructure: Synthesis, computational particle shape analysis in micrographs and magnetic properties. in Ceramics International, 43(10), 7497-7507.
https://doi.org/10.1016/j.ceramint.2017.03.030
Nikolić VN, Spasojević V, Panjan M, Kopanja L, Mraković AĐ, Tadić M. Re-formation of metastable epsilon-Fe2O3 in post-annealing of Fe2O3/SiO2 nanostructure: Synthesis, computational particle shape analysis in micrographs and magnetic properties. in Ceramics International. 2017;43(10):7497-7507.
doi:10.1016/j.ceramint.2017.03.030 .
Nikolić, Violeta N., Spasojević, Vojislav, Panjan, Matjaž, Kopanja, Lazar, Mraković, Ana Đ., Tadić, Marin, "Re-formation of metastable epsilon-Fe2O3 in post-annealing of Fe2O3/SiO2 nanostructure: Synthesis, computational particle shape analysis in micrographs and magnetic properties" in Ceramics International, 43, no. 10 (2017):7497-7507,
https://doi.org/10.1016/j.ceramint.2017.03.030 . .
38
30
39