European Commission [MEST-CT-2005-021018]

Link to this page

European Commission [MEST-CT-2005-021018]

Authors

Publications

Numerical investigation of pulverized coal jet flame characteristics under different oxy-fuel conditions

Jovanović, Rastko D.; Rasuo, Basko; Stefanović, Predrag Lj.; Cvetinović, Dejan; Swiatkowski, Bartosz

(2013)

TY  - JOUR
AU  - Jovanović, Rastko D.
AU  - Rasuo, Basko
AU  - Stefanović, Predrag Lj.
AU  - Cvetinović, Dejan
AU  - Swiatkowski, Bartosz
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5311
AB  - Pulverized coal combustion in mixture of oxygen and recycled flue gasses, known as oxy-fuel combustion, is considered as one of the several possible alternatives to conventional pulverized coal combustion. Switching from conventional pulverized-coal combustion to oxy-fuel combustion brings significant changes in flame properties among which the most important are ignition properties and flame stability. This paper presents the results of experimental and numerical analysis of ignition phenomena under O-2/CO2 mixtures with different oxygen content. The main focus of the presented paper is to suggest novel ignition sub-model which can describe all possible ignition mechanisms. Proposed ignition sub-model together with Large Eddy Simulation (LES) turbulence modeling enables accurate prediction of main flame characteristics: ignition point position, ignition temperature, and flame stability. (C) 2012 Elsevier Ltd. All rights reserved.
T2  - International Journal of Heat and Mass Transfer
T1  - Numerical investigation of pulverized coal jet flame characteristics under different oxy-fuel conditions
VL  - 58
IS  - 1-2
SP  - 654
EP  - 662
DO  - 10.1016/j.ijheatmasstransfer.2012.11.070
ER  - 
@article{
author = "Jovanović, Rastko D. and Rasuo, Basko and Stefanović, Predrag Lj. and Cvetinović, Dejan and Swiatkowski, Bartosz",
year = "2013",
abstract = "Pulverized coal combustion in mixture of oxygen and recycled flue gasses, known as oxy-fuel combustion, is considered as one of the several possible alternatives to conventional pulverized coal combustion. Switching from conventional pulverized-coal combustion to oxy-fuel combustion brings significant changes in flame properties among which the most important are ignition properties and flame stability. This paper presents the results of experimental and numerical analysis of ignition phenomena under O-2/CO2 mixtures with different oxygen content. The main focus of the presented paper is to suggest novel ignition sub-model which can describe all possible ignition mechanisms. Proposed ignition sub-model together with Large Eddy Simulation (LES) turbulence modeling enables accurate prediction of main flame characteristics: ignition point position, ignition temperature, and flame stability. (C) 2012 Elsevier Ltd. All rights reserved.",
journal = "International Journal of Heat and Mass Transfer",
title = "Numerical investigation of pulverized coal jet flame characteristics under different oxy-fuel conditions",
volume = "58",
number = "1-2",
pages = "654-662",
doi = "10.1016/j.ijheatmasstransfer.2012.11.070"
}
Jovanović, R. D., Rasuo, B., Stefanović, P. Lj., Cvetinović, D.,& Swiatkowski, B.. (2013). Numerical investigation of pulverized coal jet flame characteristics under different oxy-fuel conditions. in International Journal of Heat and Mass Transfer, 58(1-2), 654-662.
https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.070
Jovanović RD, Rasuo B, Stefanović PL, Cvetinović D, Swiatkowski B. Numerical investigation of pulverized coal jet flame characteristics under different oxy-fuel conditions. in International Journal of Heat and Mass Transfer. 2013;58(1-2):654-662.
doi:10.1016/j.ijheatmasstransfer.2012.11.070 .
Jovanović, Rastko D., Rasuo, Basko, Stefanović, Predrag Lj., Cvetinović, Dejan, Swiatkowski, Bartosz, "Numerical investigation of pulverized coal jet flame characteristics under different oxy-fuel conditions" in International Journal of Heat and Mass Transfer, 58, no. 1-2 (2013):654-662,
https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.070 . .
18
15
20