CEEPUS network [CIII-CZ-0212-12-1819-M-122538]

Link to this page

CEEPUS network [CIII-CZ-0212-12-1819-M-122538]

Authors

Publications

Evaluation of phenolic antioxidant capacity in beverages based on laccase immobilized on screen-printed carbon electrode modified with graphene nanoplatelets and gold nanoparticles

Zrinski, Ivana; Pungjunun, Kingkan; Martinez, Sanja; Zavašnik, Janez; Stanković, Dalibor M.; Kalcher, Kurt; Mehmeti, Eda

(2020)

TY  - JOUR
AU  - Zrinski, Ivana
AU  - Pungjunun, Kingkan
AU  - Martinez, Sanja
AU  - Zavašnik, Janez
AU  - Stanković, Dalibor M.
AU  - Kalcher, Kurt
AU  - Mehmeti, Eda
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8588
AB  - A simple and highly sensitive electrochemical biosensor based on laccase immobilized onto a gold nanoparticles/graphene nanoplatelets-modified screen-printed carbon electrode (LACC/AuNP/GNPl/SPCE) was developed for the determination of hydroquinone (HQ) and other phenolic compounds. The biosensor shows excellent electro-catalytic activity towards oxidation of hydroquinone at a potential of -0.05 V (vs Ag/AgCl, 3 M KCl) in phosphate buffer as supporting electrolyte (0.1 M, pH 7.0) using hydrodynamic amperometry. Analytical characteristics uncover that the LACC/AuNP/GNPl/SPCE comprises a wide linear range for the dependence of the signal on HQ concentrations from 4 to 130 µM with a detection limit (3σ) of 1.5 µM. The repeatability (5 measurements, 100 µM hydroquinone) is ±2% and the reproducibility (5 biosensors, 100 µM hydroquinone) is ±3%. Interference studies of most common compounds with the determination of hydroquinone demonstrated negligible effects. Finally, the biosensor and the analytical method were applied to the determination of phenolic antioxidant capacity (AOC) in wine and blueberry syrup based on Trolox (6‑hydroxy‑2,5,7,8-tetramethylchromane-2-carboxylic acid) and hydroquinone equivalents. The results were evaluated by using their calibration curves which were satisfactory and agreed well with the results obtained by the reference method Trolox Equivalent Antioxidant Capacity assay (TEAC-Assay).
T2  - Microchemical Journal
T1  - Evaluation of phenolic antioxidant capacity in beverages based on laccase immobilized on screen-printed carbon electrode modified with graphene nanoplatelets and gold nanoparticles
VL  - 152
SP  - 104282
DO  - 10.1016/j.microc.2019.104282
ER  - 
@article{
author = "Zrinski, Ivana and Pungjunun, Kingkan and Martinez, Sanja and Zavašnik, Janez and Stanković, Dalibor M. and Kalcher, Kurt and Mehmeti, Eda",
year = "2020",
abstract = "A simple and highly sensitive electrochemical biosensor based on laccase immobilized onto a gold nanoparticles/graphene nanoplatelets-modified screen-printed carbon electrode (LACC/AuNP/GNPl/SPCE) was developed for the determination of hydroquinone (HQ) and other phenolic compounds. The biosensor shows excellent electro-catalytic activity towards oxidation of hydroquinone at a potential of -0.05 V (vs Ag/AgCl, 3 M KCl) in phosphate buffer as supporting electrolyte (0.1 M, pH 7.0) using hydrodynamic amperometry. Analytical characteristics uncover that the LACC/AuNP/GNPl/SPCE comprises a wide linear range for the dependence of the signal on HQ concentrations from 4 to 130 µM with a detection limit (3σ) of 1.5 µM. The repeatability (5 measurements, 100 µM hydroquinone) is ±2% and the reproducibility (5 biosensors, 100 µM hydroquinone) is ±3%. Interference studies of most common compounds with the determination of hydroquinone demonstrated negligible effects. Finally, the biosensor and the analytical method were applied to the determination of phenolic antioxidant capacity (AOC) in wine and blueberry syrup based on Trolox (6‑hydroxy‑2,5,7,8-tetramethylchromane-2-carboxylic acid) and hydroquinone equivalents. The results were evaluated by using their calibration curves which were satisfactory and agreed well with the results obtained by the reference method Trolox Equivalent Antioxidant Capacity assay (TEAC-Assay).",
journal = "Microchemical Journal",
title = "Evaluation of phenolic antioxidant capacity in beverages based on laccase immobilized on screen-printed carbon electrode modified with graphene nanoplatelets and gold nanoparticles",
volume = "152",
pages = "104282",
doi = "10.1016/j.microc.2019.104282"
}
Zrinski, I., Pungjunun, K., Martinez, S., Zavašnik, J., Stanković, D. M., Kalcher, K.,& Mehmeti, E.. (2020). Evaluation of phenolic antioxidant capacity in beverages based on laccase immobilized on screen-printed carbon electrode modified with graphene nanoplatelets and gold nanoparticles. in Microchemical Journal, 152, 104282.
https://doi.org/10.1016/j.microc.2019.104282
Zrinski I, Pungjunun K, Martinez S, Zavašnik J, Stanković DM, Kalcher K, Mehmeti E. Evaluation of phenolic antioxidant capacity in beverages based on laccase immobilized on screen-printed carbon electrode modified with graphene nanoplatelets and gold nanoparticles. in Microchemical Journal. 2020;152:104282.
doi:10.1016/j.microc.2019.104282 .
Zrinski, Ivana, Pungjunun, Kingkan, Martinez, Sanja, Zavašnik, Janez, Stanković, Dalibor M., Kalcher, Kurt, Mehmeti, Eda, "Evaluation of phenolic antioxidant capacity in beverages based on laccase immobilized on screen-printed carbon electrode modified with graphene nanoplatelets and gold nanoparticles" in Microchemical Journal, 152 (2020):104282,
https://doi.org/10.1016/j.microc.2019.104282 . .
2
38
19
34