Reinforcing of Nanotechnology and Functional Materials Centre

Link to this page

info:eu-repo/grantAgreement/EC/FP7/245916/EU//

Reinforcing of Nanotechnology and Functional Materials Centre (en)
Authors

Publications

Corrosion Stability and Bioactivity in Simulated Body Fluid of Silver/Hydroxyapatite and Silver/Hydroxyapatite/Lignin Coatings on Titanium Obtained by Electrophoretic Deposition

Eraković, Sanja; Janković, Ana; Veljović, Đorđe N.; Palcevskis, Eriks; Mitrić, Miodrag; Stevanović, Tatjana; Janaćković, Đorđe T.; Mišković-Stanković, Vesna B.

(2013)

TY  - JOUR
AU  - Eraković, Sanja
AU  - Janković, Ana
AU  - Veljović, Đorđe N.
AU  - Palcevskis, Eriks
AU  - Mitrić, Miodrag
AU  - Stevanović, Tatjana
AU  - Janaćković, Đorđe T.
AU  - Mišković-Stanković, Vesna B.
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5321
AB  - Hydroxyapatite is the most suitable biocompatible material for bone implant coatings. However, its brittleness is a major obstacle, and that is why, recently, research focused on creating composites with various biopolymers. In this study, hydroxyapatite coatings were modified with lignin in order to attain corrosion stability and surface porosity that enables osteogenesis. Incorporating silver, well known for its antimicrobial properties, seemed the best strategy for avoiding possible infections. The silver/hydroxyapatite (Ag/HAP) and silver/hydroxyapatite/lignin (Ag/HAP/Lig) coatings were cathaphoretically deposited on titanium from ethanol suspensions, sintered at 900 degrees C in Ar, and characterized by X-ray diffraction, scanning electron microscopy, field emission scanning electron microscopy, attenuated total reflection Fourier transform infrared, and X-ray photoelectron spectroscopy. The corrosion stability of electrodeposited coatings was evaluated in vitro in Kokubos simulated body fluid (SBF) at 37 degrees C using electrochemical impedance spectroscopy. Bioactivity was estimated by immersion in SBF to evaluate the formation of hydroxyapatite on the coating surface. A microcrystalline structure of newly formed plate-shaped carbonate-hydroxyapatite was detected after only 7 days, indicating enhanced bioactive behavior. Both coatings had good corrosion stability during a prolonged immersion time. Among the two, the Ag/HAP/Lig coating had a homogeneous surface, less roughness, and low values of contact angle.
T2  - Journal of Physical Chemistry. Part B: Condensed Matter, Materials, Surfaces, Interfaces and Biophysical
T1  - Corrosion Stability and Bioactivity in Simulated Body Fluid of Silver/Hydroxyapatite and Silver/Hydroxyapatite/Lignin Coatings on Titanium Obtained by Electrophoretic Deposition
VL  - 117
IS  - 6
SP  - 1633
EP  - 1643
DO  - 10.1021/jp305252a
ER  - 
@article{
author = "Eraković, Sanja and Janković, Ana and Veljović, Đorđe N. and Palcevskis, Eriks and Mitrić, Miodrag and Stevanović, Tatjana and Janaćković, Đorđe T. and Mišković-Stanković, Vesna B.",
year = "2013",
abstract = "Hydroxyapatite is the most suitable biocompatible material for bone implant coatings. However, its brittleness is a major obstacle, and that is why, recently, research focused on creating composites with various biopolymers. In this study, hydroxyapatite coatings were modified with lignin in order to attain corrosion stability and surface porosity that enables osteogenesis. Incorporating silver, well known for its antimicrobial properties, seemed the best strategy for avoiding possible infections. The silver/hydroxyapatite (Ag/HAP) and silver/hydroxyapatite/lignin (Ag/HAP/Lig) coatings were cathaphoretically deposited on titanium from ethanol suspensions, sintered at 900 degrees C in Ar, and characterized by X-ray diffraction, scanning electron microscopy, field emission scanning electron microscopy, attenuated total reflection Fourier transform infrared, and X-ray photoelectron spectroscopy. The corrosion stability of electrodeposited coatings was evaluated in vitro in Kokubos simulated body fluid (SBF) at 37 degrees C using electrochemical impedance spectroscopy. Bioactivity was estimated by immersion in SBF to evaluate the formation of hydroxyapatite on the coating surface. A microcrystalline structure of newly formed plate-shaped carbonate-hydroxyapatite was detected after only 7 days, indicating enhanced bioactive behavior. Both coatings had good corrosion stability during a prolonged immersion time. Among the two, the Ag/HAP/Lig coating had a homogeneous surface, less roughness, and low values of contact angle.",
journal = "Journal of Physical Chemistry. Part B: Condensed Matter, Materials, Surfaces, Interfaces and Biophysical",
title = "Corrosion Stability and Bioactivity in Simulated Body Fluid of Silver/Hydroxyapatite and Silver/Hydroxyapatite/Lignin Coatings on Titanium Obtained by Electrophoretic Deposition",
volume = "117",
number = "6",
pages = "1633-1643",
doi = "10.1021/jp305252a"
}
Eraković, S., Janković, A., Veljović, Đ. N., Palcevskis, E., Mitrić, M., Stevanović, T., Janaćković, Đ. T.,& Mišković-Stanković, V. B.. (2013). Corrosion Stability and Bioactivity in Simulated Body Fluid of Silver/Hydroxyapatite and Silver/Hydroxyapatite/Lignin Coatings on Titanium Obtained by Electrophoretic Deposition. in Journal of Physical Chemistry. Part B: Condensed Matter, Materials, Surfaces, Interfaces and Biophysical, 117(6), 1633-1643.
https://doi.org/10.1021/jp305252a
Eraković S, Janković A, Veljović ĐN, Palcevskis E, Mitrić M, Stevanović T, Janaćković ĐT, Mišković-Stanković VB. Corrosion Stability and Bioactivity in Simulated Body Fluid of Silver/Hydroxyapatite and Silver/Hydroxyapatite/Lignin Coatings on Titanium Obtained by Electrophoretic Deposition. in Journal of Physical Chemistry. Part B: Condensed Matter, Materials, Surfaces, Interfaces and Biophysical. 2013;117(6):1633-1643.
doi:10.1021/jp305252a .
Eraković, Sanja, Janković, Ana, Veljović, Đorđe N., Palcevskis, Eriks, Mitrić, Miodrag, Stevanović, Tatjana, Janaćković, Đorđe T., Mišković-Stanković, Vesna B., "Corrosion Stability and Bioactivity in Simulated Body Fluid of Silver/Hydroxyapatite and Silver/Hydroxyapatite/Lignin Coatings on Titanium Obtained by Electrophoretic Deposition" in Journal of Physical Chemistry. Part B: Condensed Matter, Materials, Surfaces, Interfaces and Biophysical, 117, no. 6 (2013):1633-1643,
https://doi.org/10.1021/jp305252a . .
89
73
95

Novel Pt catalyst on ruthenium doped TiO2 support for oxygen reduction reaction

Elezovic, N. R.; Babić, Biljana M.; Radmilovíć, Velimir R.; Vracar, Lj. M.; Krstajic, N. V.

(2013)

TY  - JOUR
AU  - Elezovic, N. R.
AU  - Babić, Biljana M.
AU  - Radmilovíć, Velimir R.
AU  - Vracar, Lj. M.
AU  - Krstajic, N. V.
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5591
AB  - Ruthenium doped titanium oxide support was synthesized. The support was characterized by BET (Brunauer, Emmett, Teller) and X-ray diffraction techniques (XRD). Determined specific surface area was 41 m(2) g(-1). XRD revealed presence mainly TiO2 anatase phase and some peaks belonging to rutile phase. No Ru compounds have been detected. Platinum based catalyst on this support was prepared by borohydride reduction method. The catalyst was characterized by scanning transmission electron microscopy (STEM, HAADF) and electron energy loss spectroscopy (EELS). Homogenous Pt particle distribution over the support, with average Pt nanoparticle diameter of 3 nm was found. This novel catalyst was tested for oxygen reduction in acid solution. It exhibited remarkable higher catalytic activity in comparison with Pt/C, as well as with Pt nanocatalysts at titanium oxide based supports, reported in literature. (C) 2013 Elsevier B.V. All rights reserved.
T2  - Applied Catalysis. B: Environmental
T1  - Novel Pt catalyst on ruthenium doped TiO2 support for oxygen reduction reaction
VL  - 140
SP  - 206
EP  - 212
DO  - 10.1016/j.apcatb.2013.04.012
ER  - 
@article{
author = "Elezovic, N. R. and Babić, Biljana M. and Radmilovíć, Velimir R. and Vracar, Lj. M. and Krstajic, N. V.",
year = "2013",
abstract = "Ruthenium doped titanium oxide support was synthesized. The support was characterized by BET (Brunauer, Emmett, Teller) and X-ray diffraction techniques (XRD). Determined specific surface area was 41 m(2) g(-1). XRD revealed presence mainly TiO2 anatase phase and some peaks belonging to rutile phase. No Ru compounds have been detected. Platinum based catalyst on this support was prepared by borohydride reduction method. The catalyst was characterized by scanning transmission electron microscopy (STEM, HAADF) and electron energy loss spectroscopy (EELS). Homogenous Pt particle distribution over the support, with average Pt nanoparticle diameter of 3 nm was found. This novel catalyst was tested for oxygen reduction in acid solution. It exhibited remarkable higher catalytic activity in comparison with Pt/C, as well as with Pt nanocatalysts at titanium oxide based supports, reported in literature. (C) 2013 Elsevier B.V. All rights reserved.",
journal = "Applied Catalysis. B: Environmental",
title = "Novel Pt catalyst on ruthenium doped TiO2 support for oxygen reduction reaction",
volume = "140",
pages = "206-212",
doi = "10.1016/j.apcatb.2013.04.012"
}
Elezovic, N. R., Babić, B. M., Radmilovíć, V. R., Vracar, Lj. M.,& Krstajic, N. V.. (2013). Novel Pt catalyst on ruthenium doped TiO2 support for oxygen reduction reaction. in Applied Catalysis. B: Environmental, 140, 206-212.
https://doi.org/10.1016/j.apcatb.2013.04.012
Elezovic NR, Babić BM, Radmilovíć VR, Vracar LM, Krstajic NV. Novel Pt catalyst on ruthenium doped TiO2 support for oxygen reduction reaction. in Applied Catalysis. B: Environmental. 2013;140:206-212.
doi:10.1016/j.apcatb.2013.04.012 .
Elezovic, N. R., Babić, Biljana M., Radmilovíć, Velimir R., Vracar, Lj. M., Krstajic, N. V., "Novel Pt catalyst on ruthenium doped TiO2 support for oxygen reduction reaction" in Applied Catalysis. B: Environmental, 140 (2013):206-212,
https://doi.org/10.1016/j.apcatb.2013.04.012 . .
19
13
18

Preparation of TiO2/carbon nanotubes photocatalysts: The influence of the method of oxidation of the carbon nanotubes on the photocatalytic activity of the nanocomposites

Đokić, Veljko R.; Marinković, Aleksandar D.; Mitrić, Miodrag; Uskoković, Petar S.; Petrovic, Rada D.; Radmilović, Velimir; Janaćković, Đorđe T.

(2012)

TY  - JOUR
AU  - Đokić, Veljko R.
AU  - Marinković, Aleksandar D.
AU  - Mitrić, Miodrag
AU  - Uskoković, Petar S.
AU  - Petrovic, Rada D.
AU  - Radmilović, Velimir
AU  - Janaćković, Đorđe T.
PY  - 2012
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5085
AB  - A method for the preparation of efficient TiO2/multi-wall carbon nanotubes nanocomposite photocatalysts by precipitation of anatase TiO2 nanoparticles onto differently oxidized carbon nanotubes is presented. The precursor compound titanium(IV) bromide was hydrolyzed producing pure anatase phase TiO2 nanoparticles decorated on the surface of the oxidized carbon nanotubes. The oxidative treatment of the carbon nanotubes influenced the type, quantity and distribution of oxygen-containing functional groups, which had a significant influence on the electron transfer properties, i.e., the photocatalytic activity of the synthesized nanocomposites. The results of C.I. Reactive Orange 16 photodegradation in the presence of all the synthesized nanocomposites showed their better photocatalytic activity in comparison to the commercial photocatalyst Degussa P-25. (C) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
T2  - Ceramics International
T1  - Preparation of TiO2/carbon nanotubes photocatalysts: The influence of the method of oxidation of the carbon nanotubes on the photocatalytic activity of the nanocomposites
VL  - 38
IS  - 8
SP  - 6123
EP  - 6129
DO  - 10.1016/j.ceramint.2012.04.060
ER  - 
@article{
author = "Đokić, Veljko R. and Marinković, Aleksandar D. and Mitrić, Miodrag and Uskoković, Petar S. and Petrovic, Rada D. and Radmilović, Velimir and Janaćković, Đorđe T.",
year = "2012",
abstract = "A method for the preparation of efficient TiO2/multi-wall carbon nanotubes nanocomposite photocatalysts by precipitation of anatase TiO2 nanoparticles onto differently oxidized carbon nanotubes is presented. The precursor compound titanium(IV) bromide was hydrolyzed producing pure anatase phase TiO2 nanoparticles decorated on the surface of the oxidized carbon nanotubes. The oxidative treatment of the carbon nanotubes influenced the type, quantity and distribution of oxygen-containing functional groups, which had a significant influence on the electron transfer properties, i.e., the photocatalytic activity of the synthesized nanocomposites. The results of C.I. Reactive Orange 16 photodegradation in the presence of all the synthesized nanocomposites showed their better photocatalytic activity in comparison to the commercial photocatalyst Degussa P-25. (C) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.",
journal = "Ceramics International",
title = "Preparation of TiO2/carbon nanotubes photocatalysts: The influence of the method of oxidation of the carbon nanotubes on the photocatalytic activity of the nanocomposites",
volume = "38",
number = "8",
pages = "6123-6129",
doi = "10.1016/j.ceramint.2012.04.060"
}
Đokić, V. R., Marinković, A. D., Mitrić, M., Uskoković, P. S., Petrovic, R. D., Radmilović, V.,& Janaćković, Đ. T.. (2012). Preparation of TiO2/carbon nanotubes photocatalysts: The influence of the method of oxidation of the carbon nanotubes on the photocatalytic activity of the nanocomposites. in Ceramics International, 38(8), 6123-6129.
https://doi.org/10.1016/j.ceramint.2012.04.060
Đokić VR, Marinković AD, Mitrić M, Uskoković PS, Petrovic RD, Radmilović V, Janaćković ĐT. Preparation of TiO2/carbon nanotubes photocatalysts: The influence of the method of oxidation of the carbon nanotubes on the photocatalytic activity of the nanocomposites. in Ceramics International. 2012;38(8):6123-6129.
doi:10.1016/j.ceramint.2012.04.060 .
Đokić, Veljko R., Marinković, Aleksandar D., Mitrić, Miodrag, Uskoković, Petar S., Petrovic, Rada D., Radmilović, Velimir, Janaćković, Đorđe T., "Preparation of TiO2/carbon nanotubes photocatalysts: The influence of the method of oxidation of the carbon nanotubes on the photocatalytic activity of the nanocomposites" in Ceramics International, 38, no. 8 (2012):6123-6129,
https://doi.org/10.1016/j.ceramint.2012.04.060 . .
21
21
25

Core-shell structured tungsten-tungsten carbide as a Pt catalyst support and its activity for methanol electrooxidation

Obradović, Maja D.; Babić, Biljana M.; Radmilovíć, Velimir R.; Krstajic, N. V.; Gojković, Snežana Lj.

(2012)

TY  - JOUR
AU  - Obradović, Maja D.
AU  - Babić, Biljana M.
AU  - Radmilovíć, Velimir R.
AU  - Krstajic, N. V.
AU  - Gojković, Snežana Lj.
PY  - 2012
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/4946
AB  - Tungsten carbide was synthesized by calcination of carbon cryogel containing tungsten in a form of metatungstate. Characterization by X-ray diffraction and transmission electron microscopy indicated core-shell structure of the particles with tungsten core and tungsten carbide shell, attached to graphitized carbon. Pt nanoparticles were deposited on this material and most of them were nucleated on tungsten carbide. Cyclic voltammetry of W-C support and Pt/W-C catalyst indicated hydrogen intercalation in surface hydrous tungsten oxide. Oxidation of COads on Pt/W-C commences earlier than on Pt/C for about 100 mV. The onset potentials of MOR on Pt/W-C and Pt/C are the same, but at more positive potentials Pt/W-C catalyst is more active. It was proposed that promotion of MOR is based on bifunctional mechanism that facilitates COads removal. Stability test was performed by potential cycling of Pt/W-C and Pt/C in the supporting electrolyte and in the presence of methanol. Pt surface area loss observed in the supporting electrolyte of both catalysts after 250 cycles was about 20%. Decrease in the activity for methanol oxidation was 30% for Pt/W-C, but even 48% for Pt/C. The difference was explained by the presence of hydrous tungsten oxide on Pt in Pt/W-C catalyst, which reduces accumulation of poisoning COads. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
T2  - International Journal of Hydrogen Energy
T1  - Core-shell structured tungsten-tungsten carbide as a Pt catalyst support and its activity for methanol electrooxidation
VL  - 37
IS  - 14
SP  - 10671
EP  - 10679
DO  - 10.1016/j.ijhydene.2012.04.114
ER  - 
@article{
author = "Obradović, Maja D. and Babić, Biljana M. and Radmilovíć, Velimir R. and Krstajic, N. V. and Gojković, Snežana Lj.",
year = "2012",
abstract = "Tungsten carbide was synthesized by calcination of carbon cryogel containing tungsten in a form of metatungstate. Characterization by X-ray diffraction and transmission electron microscopy indicated core-shell structure of the particles with tungsten core and tungsten carbide shell, attached to graphitized carbon. Pt nanoparticles were deposited on this material and most of them were nucleated on tungsten carbide. Cyclic voltammetry of W-C support and Pt/W-C catalyst indicated hydrogen intercalation in surface hydrous tungsten oxide. Oxidation of COads on Pt/W-C commences earlier than on Pt/C for about 100 mV. The onset potentials of MOR on Pt/W-C and Pt/C are the same, but at more positive potentials Pt/W-C catalyst is more active. It was proposed that promotion of MOR is based on bifunctional mechanism that facilitates COads removal. Stability test was performed by potential cycling of Pt/W-C and Pt/C in the supporting electrolyte and in the presence of methanol. Pt surface area loss observed in the supporting electrolyte of both catalysts after 250 cycles was about 20%. Decrease in the activity for methanol oxidation was 30% for Pt/W-C, but even 48% for Pt/C. The difference was explained by the presence of hydrous tungsten oxide on Pt in Pt/W-C catalyst, which reduces accumulation of poisoning COads. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.",
journal = "International Journal of Hydrogen Energy",
title = "Core-shell structured tungsten-tungsten carbide as a Pt catalyst support and its activity for methanol electrooxidation",
volume = "37",
number = "14",
pages = "10671-10679",
doi = "10.1016/j.ijhydene.2012.04.114"
}
Obradović, M. D., Babić, B. M., Radmilovíć, V. R., Krstajic, N. V.,& Gojković, S. Lj.. (2012). Core-shell structured tungsten-tungsten carbide as a Pt catalyst support and its activity for methanol electrooxidation. in International Journal of Hydrogen Energy, 37(14), 10671-10679.
https://doi.org/10.1016/j.ijhydene.2012.04.114
Obradović MD, Babić BM, Radmilovíć VR, Krstajic NV, Gojković SL. Core-shell structured tungsten-tungsten carbide as a Pt catalyst support and its activity for methanol electrooxidation. in International Journal of Hydrogen Energy. 2012;37(14):10671-10679.
doi:10.1016/j.ijhydene.2012.04.114 .
Obradović, Maja D., Babić, Biljana M., Radmilovíć, Velimir R., Krstajic, N. V., Gojković, Snežana Lj., "Core-shell structured tungsten-tungsten carbide as a Pt catalyst support and its activity for methanol electrooxidation" in International Journal of Hydrogen Energy, 37, no. 14 (2012):10671-10679,
https://doi.org/10.1016/j.ijhydene.2012.04.114 . .
20
21
23

Formic acid oxidation on Pt-Au nanoparticles: Relation between the catalyst activity and the poisoning rate

Obradović, Maja D.; Rogan, Jelena R.; Babić, Biljana M.; Tripkovic, A. V.; Gautam, A. R. S.; Radmilovíć, Velimir R.; Gojković, Snežana Lj.

(2012)

TY  - JOUR
AU  - Obradović, Maja D.
AU  - Rogan, Jelena R.
AU  - Babić, Biljana M.
AU  - Tripkovic, A. V.
AU  - Gautam, A. R. S.
AU  - Radmilovíć, Velimir R.
AU  - Gojković, Snežana Lj.
PY  - 2012
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/4583
AB  - Pt-Au nanoparticles supported on high area carbon were prepared by simultaneous reduction of Au and Pt precursors and by reduction of Pt precursor on already prepared Au nanoparticles. The first method produced a solid solution of Pt in Au containing similar to 5% Pt with the remaining Pt on the nanoparticles surface. For the Pt:Au precursor ratio of 1:4 and 1:9, the surface ratio was found to be 0.70:0.30 and 0.55:0.45, respectively. By the second method with the Pt:Au precursors ratio of 1:12, the surface ratio was 0.30:0.70. The voltammetric peaks of Pt-oxide reduction and CO(ads) oxidation demonstrated electronic modification of Pt by Au in all catalysts. With decreasing Pt:Au surface ratio the activity for HCOOH oxidation increases and surface coverage by CO(ads) decreases. The highest activity under potentiodynamic and quasi steady-state conditions without poisoning by CO(ads) was observed for the catalyst with the lowest Pt:Au surface ratio. Chronoamperometic test showed that its high catalytic activity is associated with a high deactivation rate. It was postulated that too strong adsorption of a reactive or non-reactive intermediate caused by electron modification of Pt by underlying Au, is responsible for the deactivation. This result stresses that high Pt dispersion, necessary for promotion of the dehydrogenation path in HCOOH oxidation, can produce too strong adsorption of intermediates causing deactivation of the catalyst. (C) 2011 Elsevier B.V. All rights reserved.
T2  - Journal of Power Sources
T1  - Formic acid oxidation on Pt-Au nanoparticles: Relation between the catalyst activity and the poisoning rate
VL  - 197
SP  - 72
EP  - 79
DO  - 10.1016/j.jpowsour.2011.09.043
ER  - 
@article{
author = "Obradović, Maja D. and Rogan, Jelena R. and Babić, Biljana M. and Tripkovic, A. V. and Gautam, A. R. S. and Radmilovíć, Velimir R. and Gojković, Snežana Lj.",
year = "2012",
abstract = "Pt-Au nanoparticles supported on high area carbon were prepared by simultaneous reduction of Au and Pt precursors and by reduction of Pt precursor on already prepared Au nanoparticles. The first method produced a solid solution of Pt in Au containing similar to 5% Pt with the remaining Pt on the nanoparticles surface. For the Pt:Au precursor ratio of 1:4 and 1:9, the surface ratio was found to be 0.70:0.30 and 0.55:0.45, respectively. By the second method with the Pt:Au precursors ratio of 1:12, the surface ratio was 0.30:0.70. The voltammetric peaks of Pt-oxide reduction and CO(ads) oxidation demonstrated electronic modification of Pt by Au in all catalysts. With decreasing Pt:Au surface ratio the activity for HCOOH oxidation increases and surface coverage by CO(ads) decreases. The highest activity under potentiodynamic and quasi steady-state conditions without poisoning by CO(ads) was observed for the catalyst with the lowest Pt:Au surface ratio. Chronoamperometic test showed that its high catalytic activity is associated with a high deactivation rate. It was postulated that too strong adsorption of a reactive or non-reactive intermediate caused by electron modification of Pt by underlying Au, is responsible for the deactivation. This result stresses that high Pt dispersion, necessary for promotion of the dehydrogenation path in HCOOH oxidation, can produce too strong adsorption of intermediates causing deactivation of the catalyst. (C) 2011 Elsevier B.V. All rights reserved.",
journal = "Journal of Power Sources",
title = "Formic acid oxidation on Pt-Au nanoparticles: Relation between the catalyst activity and the poisoning rate",
volume = "197",
pages = "72-79",
doi = "10.1016/j.jpowsour.2011.09.043"
}
Obradović, M. D., Rogan, J. R., Babić, B. M., Tripkovic, A. V., Gautam, A. R. S., Radmilovíć, V. R.,& Gojković, S. Lj.. (2012). Formic acid oxidation on Pt-Au nanoparticles: Relation between the catalyst activity and the poisoning rate. in Journal of Power Sources, 197, 72-79.
https://doi.org/10.1016/j.jpowsour.2011.09.043
Obradović MD, Rogan JR, Babić BM, Tripkovic AV, Gautam ARS, Radmilovíć VR, Gojković SL. Formic acid oxidation on Pt-Au nanoparticles: Relation between the catalyst activity and the poisoning rate. in Journal of Power Sources. 2012;197:72-79.
doi:10.1016/j.jpowsour.2011.09.043 .
Obradović, Maja D., Rogan, Jelena R., Babić, Biljana M., Tripkovic, A. V., Gautam, A. R. S., Radmilovíć, Velimir R., Gojković, Snežana Lj., "Formic acid oxidation on Pt-Au nanoparticles: Relation between the catalyst activity and the poisoning rate" in Journal of Power Sources, 197 (2012):72-79,
https://doi.org/10.1016/j.jpowsour.2011.09.043 . .
44
39
48