Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung and Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University of Malaya (Malaysia), CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretarla de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, OPUS programme of the National Science Center (Poland), Compagnia di San Paolo (Torino), Consorzio per la Fisica (Trieste), MIUR [20108T4XTM], Thalis and Aristeia programmes - EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Welch Foundation [C-1845]

Link to this page

Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung and Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University of Malaya (Malaysia), CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretarla de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, OPUS programme of the National Science Center (Poland), Compagnia di San Paolo (Torino), Consorzio per la Fisica (Trieste), MIUR [20108T4XTM], Thalis and Aristeia programmes - EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Welch Foundation [C-1845]

Authors

Publications

Search for W - GT tb in proton-proton collisions at root s=8 TeV

Khachatryan, V.; Adžić, Petar; Ekmedžić, Marko; Milošević, Jovan; Reković, Vladimir; Đorđević, Miloš; Milenović, Predrag

(2016)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Reković, Vladimir
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1047
AB  - A search is performed for the production of a massive W boson decaying to a top and a bottom quark. The data analysed correspond to an integrated luminosity of 19.71 fb(-1) collected with the CMS detector at the LHC in proton-proton collisions at root s = 8 TeV. The hadronic decay products of the top quark with high Lorentz boost from the W boson decay are detected as a single top flavoured jet. The use of jet substructure algorithms allows the top quark jet to be distinguished from standard model QCD background. Limits on the production cross section of a right-handed W boson are obtained, together with constraints on the left-handed and right-handed couplings of the W boson to quarks. The production of a right-handed W boson with a mass below 2.02 TeV decaying to a hadronic final state is excluded at 95% confidence level. This mass limit increases to 2.15 TeV when both hadronic and leptonic decays are considered, and is the most stringent lower mass limit to date in the tb decay mode.
T2  - Journal of High Energy Physics
T1  - Search for W - GT tb in proton-proton collisions at root s=8 TeV
IS  - 2
DO  - 10.1007/JHEP02(2016)122
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ekmedžić, Marko and Milošević, Jovan and Reković, Vladimir and Đorđević, Miloš and Milenović, Predrag",
year = "2016",
abstract = "A search is performed for the production of a massive W boson decaying to a top and a bottom quark. The data analysed correspond to an integrated luminosity of 19.71 fb(-1) collected with the CMS detector at the LHC in proton-proton collisions at root s = 8 TeV. The hadronic decay products of the top quark with high Lorentz boost from the W boson decay are detected as a single top flavoured jet. The use of jet substructure algorithms allows the top quark jet to be distinguished from standard model QCD background. Limits on the production cross section of a right-handed W boson are obtained, together with constraints on the left-handed and right-handed couplings of the W boson to quarks. The production of a right-handed W boson with a mass below 2.02 TeV decaying to a hadronic final state is excluded at 95% confidence level. This mass limit increases to 2.15 TeV when both hadronic and leptonic decays are considered, and is the most stringent lower mass limit to date in the tb decay mode.",
journal = "Journal of High Energy Physics",
title = "Search for W - GT tb in proton-proton collisions at root s=8 TeV",
number = "2",
doi = "10.1007/JHEP02(2016)122"
}
Khachatryan, V., Adžić, P., Ekmedžić, M., Milošević, J., Reković, V., Đorđević, M.,& Milenović, P.. (2016). Search for W - GT tb in proton-proton collisions at root s=8 TeV. in Journal of High Energy Physics(2).
https://doi.org/10.1007/JHEP02(2016)122
Khachatryan V, Adžić P, Ekmedžić M, Milošević J, Reković V, Đorđević M, Milenović P. Search for W - GT tb in proton-proton collisions at root s=8 TeV. in Journal of High Energy Physics. 2016;(2).
doi:10.1007/JHEP02(2016)122 .
Khachatryan, V., Adžić, Petar, Ekmedžić, Marko, Milošević, Jovan, Reković, Vladimir, Đorđević, Miloš, Milenović, Predrag, "Search for W - GT tb in proton-proton collisions at root s=8 TeV" in Journal of High Energy Physics, no. 2 (2016),
https://doi.org/10.1007/JHEP02(2016)122 . .
3
6
4
8