Grant Agency of the Slovak Republic VEGA [1/0159/20]

Link to this page

Grant Agency of the Slovak Republic VEGA [1/0159/20]

Authors

Publications

Advanced electrochemical platform for simple and rapid quantification of tannic acid in beverages using batch injection analysis with amperometric detection

Haššo, Marek; Sarakhman, Olha; Đurđić, Slađana; Stanković, Dalibor M.; Švorc, Lubomir

(2023)

TY  - JOUR
AU  - Haššo, Marek
AU  - Sarakhman, Olha
AU  - Đurđić, Slađana
AU  - Stanković, Dalibor M.
AU  - Švorc, Lubomir
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11089
AB  - In this work, an advanced electrochemical platform was developed for the simple, rapid and sensitive determination of the polyphenolic compound tannic acid in various beverages using the combination of batch injection analysis with amperometric detection on a screen-printed carbon electrode. Several experimental parameters (pH of supporting electrolyte, detection potential, dispensing rate, injected volume, stirring) were consistently evaluated. The most favorable analytical performance in terms of sensitivity, selectivity, repeatability and sampling frequency was obtained in Britton-Robinson buffer pH 5.0 at a detection potential of +0.6 V vs. Ag/AgCl, a dispensing rate of 204 µL/s and an injected volume of 80 µL under stirring condition (1500 r.p.m.). The presented platform has advantages for routine analysis including portable and small-scale experimental setup, low sample consumption (∼100 µL), simple sample preparation (dilution in supporting electrolyte), high sampling frequency (180 injections per hour), low limit of detection (80 nM) and suitable precision (RSD = 4.2% for 10 μM tannic acid, n = 20). The applicability of the method was verified by analyzing several beverage samples (tea, wine) in spike-recovery assay with the recovery values for tannic acid ranging from 94 to 101 %. © 2023 Elsevier B.V.
T2  - Journal of Electroanalytical Chemistry
T1  - Advanced electrochemical platform for simple and rapid quantification of tannic acid in beverages using batch injection analysis with amperometric detection
VL  - 942
SP  - 117578
DO  - 10.1016/j.jelechem.2023.117578
ER  - 
@article{
author = "Haššo, Marek and Sarakhman, Olha and Đurđić, Slađana and Stanković, Dalibor M. and Švorc, Lubomir",
year = "2023",
abstract = "In this work, an advanced electrochemical platform was developed for the simple, rapid and sensitive determination of the polyphenolic compound tannic acid in various beverages using the combination of batch injection analysis with amperometric detection on a screen-printed carbon electrode. Several experimental parameters (pH of supporting electrolyte, detection potential, dispensing rate, injected volume, stirring) were consistently evaluated. The most favorable analytical performance in terms of sensitivity, selectivity, repeatability and sampling frequency was obtained in Britton-Robinson buffer pH 5.0 at a detection potential of +0.6 V vs. Ag/AgCl, a dispensing rate of 204 µL/s and an injected volume of 80 µL under stirring condition (1500 r.p.m.). The presented platform has advantages for routine analysis including portable and small-scale experimental setup, low sample consumption (∼100 µL), simple sample preparation (dilution in supporting electrolyte), high sampling frequency (180 injections per hour), low limit of detection (80 nM) and suitable precision (RSD = 4.2% for 10 μM tannic acid, n = 20). The applicability of the method was verified by analyzing several beverage samples (tea, wine) in spike-recovery assay with the recovery values for tannic acid ranging from 94 to 101 %. © 2023 Elsevier B.V.",
journal = "Journal of Electroanalytical Chemistry",
title = "Advanced electrochemical platform for simple and rapid quantification of tannic acid in beverages using batch injection analysis with amperometric detection",
volume = "942",
pages = "117578",
doi = "10.1016/j.jelechem.2023.117578"
}
Haššo, M., Sarakhman, O., Đurđić, S., Stanković, D. M.,& Švorc, L.. (2023). Advanced electrochemical platform for simple and rapid quantification of tannic acid in beverages using batch injection analysis with amperometric detection. in Journal of Electroanalytical Chemistry, 942, 117578.
https://doi.org/10.1016/j.jelechem.2023.117578
Haššo M, Sarakhman O, Đurđić S, Stanković DM, Švorc L. Advanced electrochemical platform for simple and rapid quantification of tannic acid in beverages using batch injection analysis with amperometric detection. in Journal of Electroanalytical Chemistry. 2023;942:117578.
doi:10.1016/j.jelechem.2023.117578 .
Haššo, Marek, Sarakhman, Olha, Đurđić, Slađana, Stanković, Dalibor M., Švorc, Lubomir, "Advanced electrochemical platform for simple and rapid quantification of tannic acid in beverages using batch injection analysis with amperometric detection" in Journal of Electroanalytical Chemistry, 942 (2023):117578,
https://doi.org/10.1016/j.jelechem.2023.117578 . .

Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product

Stanković, Dalibor M.; Milanović, Zorana; Švorc, Lubomir; Stanković, Vesna; Janković, Drina; Mirković, Marija D.; Vranješ-Đurić, Sanja

(2021)

TY  - JOUR
AU  - Stanković, Dalibor M.
AU  - Milanović, Zorana
AU  - Švorc, Lubomir
AU  - Stanković, Vesna
AU  - Janković, Drina
AU  - Mirković, Marija D.
AU  - Vranješ-Đurić, Sanja
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9543
AB  - This work presents advanced electrochemical platform based on screen printed diamond electrode (SPDE) system for the single drop “point-of-care” testing. Proposed approach was applied for the quantification of doxorubicin hydrochloride (DOX) in biological fluids and pharmaceutical product. Using a single drop (~30 μL) of the tested solution at the electrode surface, DOX showed high electroactivity over a wide range of pHs. In these conditions, single oval shaped, well-defined and pH dependent oxidation peak was observed in the potential range from 0.5 V to 1.3 V. In the reverse scan, two cathodic peaks, were noted – around 0.3 V and – 0.5 V. Similarly, first reduction peak was pH dependent, while second one was independent in the studied range. Experimental conditions for DOX quantification were optimized and natures of the electrode reactions were investigated. Working linear range obtained for DOX detection was from 0.1 to 2.5 μM. Diffusion controlled electrode reaction reveal long life time of the proposed electrode as well high potential for practical application. Developed procedure was successfully applied for the DOX analysis in biological fluids – urine and pharmaceutical formulation. Obtained results clearly indicated that given procedure can be easily implemented for pharmaceutical control and medical analysis, in both, laboratory and field conditions. © 2021 Elsevier B.V.
T2  - Diamond and Related Materials
T1  - Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product
VL  - 113
SP  - 108277
DO  - 10.1016/j.diamond.2021.108277
ER  - 
@article{
author = "Stanković, Dalibor M. and Milanović, Zorana and Švorc, Lubomir and Stanković, Vesna and Janković, Drina and Mirković, Marija D. and Vranješ-Đurić, Sanja",
year = "2021",
abstract = "This work presents advanced electrochemical platform based on screen printed diamond electrode (SPDE) system for the single drop “point-of-care” testing. Proposed approach was applied for the quantification of doxorubicin hydrochloride (DOX) in biological fluids and pharmaceutical product. Using a single drop (~30 μL) of the tested solution at the electrode surface, DOX showed high electroactivity over a wide range of pHs. In these conditions, single oval shaped, well-defined and pH dependent oxidation peak was observed in the potential range from 0.5 V to 1.3 V. In the reverse scan, two cathodic peaks, were noted – around 0.3 V and – 0.5 V. Similarly, first reduction peak was pH dependent, while second one was independent in the studied range. Experimental conditions for DOX quantification were optimized and natures of the electrode reactions were investigated. Working linear range obtained for DOX detection was from 0.1 to 2.5 μM. Diffusion controlled electrode reaction reveal long life time of the proposed electrode as well high potential for practical application. Developed procedure was successfully applied for the DOX analysis in biological fluids – urine and pharmaceutical formulation. Obtained results clearly indicated that given procedure can be easily implemented for pharmaceutical control and medical analysis, in both, laboratory and field conditions. © 2021 Elsevier B.V.",
journal = "Diamond and Related Materials",
title = "Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product",
volume = "113",
pages = "108277",
doi = "10.1016/j.diamond.2021.108277"
}
Stanković, D. M., Milanović, Z., Švorc, L., Stanković, V., Janković, D., Mirković, M. D.,& Vranješ-Đurić, S.. (2021). Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product. in Diamond and Related Materials, 113, 108277.
https://doi.org/10.1016/j.diamond.2021.108277
Stanković DM, Milanović Z, Švorc L, Stanković V, Janković D, Mirković MD, Vranješ-Đurić S. Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product. in Diamond and Related Materials. 2021;113:108277.
doi:10.1016/j.diamond.2021.108277 .
Stanković, Dalibor M., Milanović, Zorana, Švorc, Lubomir, Stanković, Vesna, Janković, Drina, Mirković, Marija D., Vranješ-Đurić, Sanja, "Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product" in Diamond and Related Materials, 113 (2021):108277,
https://doi.org/10.1016/j.diamond.2021.108277 . .
12
2
12