Holographic methods for generation of specific wave-fronts to better control quantum coherent effects in laser-atom interactions

Link to this page

info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/171038/RS//

Holographic methods for generation of specific wave-fronts to better control quantum coherent effects in laser-atom interactions (en)
Холографске методе генерисања специфичних таласних фронтова за ефикасну контролу квантних кохерентних ефеката у интеракцији атома и ласера (sr)
Holografske metode generisanja specifičnih talasnih frontova za efikasnu kontrolu kvantnih koherentnih efekata u interakciji atoma i lasera (sr_RS)
Authors

Publications

Суб-микрометарске паралелне површинске структуре индуковане фемтосекундним ласерским снопом у форензици

Kovačević, Aleksander; Petrović, Suzana; Lekić, Marina; Vasić, Borislav; Salatić, Branislav; Potočnik, Jelena

(Belgrade : ETRAN Society, 2022)

TY  - CONF
AU  - Kovačević, Aleksander
AU  - Petrović, Suzana
AU  - Lekić, Marina
AU  - Vasić, Borislav
AU  - Salatić, Branislav
AU  - Potočnik, Jelena
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11857
AB  - Један од ефеката интеракције ултра-кратког ласерског снопа са материјалима је формирање паралелних структура на површини (laser-induced parallel surface structures - LIPSS), чији је период мањи од таласне дужине снопа. Уколико се ради о вишеслојним танким филмовима метала, квалитет формираних структура је бољи. Узорак од пет двослојних танких филмова Al и Ti на супстрату Si смо изложили фемтосекундном снопу и запазили формирање две врсте структура које се разликују по облику. Обе су врсте вероватно узроковане појавом површинског плазмонаполаритона на површини најгорњег слоја. Појава плазмона поларитона на површини танких металних филмова и наночестица може да ограничи простирање електромагнетног поља и да појача флуоресцентни сигнал из молекула хемикалије на површини. У зависности од структуре интерфејса за одређивање циљне хемикалије на металној површини флуоресценција побољшана плазмоном (plasmon-enhanced fluorescence, PEF) је привлачан метод за скраћење времена и појачање осетљивости разних аналитичких технологија које се користе у форензици.
AB  - One of the effects of the interaction of ultrashort laser beam with materials is the forming of laser-induced parallel surface structures (LIPSS), with period less than beam wavelength. For multilayer thin metal films, the quality of formed structures is better. The sample of five bilayers of Al and Ti on Si substrate was exposed to femtosecond beam and noticed the forming of of two types of structures different in shape. Both are most probably the product of surface Plasmon polariton on the surface of most top layer. The occurrence of Plasmon polariton on the surface of thin metal layers and nanoparticles can confine the propagation of electromagnetic field and to amplify the fluorescent signal from molecules of the chemical compound on the surface. Depending on the interface structure for determining the target chemical on metal surface, Plasmon enhanced fluorescence is an attractive method for shortening the time of detection and increasing the sensitivity of various analytical technologies used in forensics.
PB  - Belgrade : ETRAN Society
PB  - Belgrade : Academic Mind
C3  - 9th International Conference IcETRAN and 66th ETRAN Conference : Proceedings ; June 6-9, 2022 ; Novi Pazar
T1  - Суб-микрометарске паралелне површинске
структуре индуковане фемтосекундним
ласерским снопом у форензици
T1  - Sub-micrometer parallel surface structures induced by femtosecond laser beam in forensics
SP  - 901
EP  - 905
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11857
ER  - 
@conference{
author = "Kovačević, Aleksander and Petrović, Suzana and Lekić, Marina and Vasić, Borislav and Salatić, Branislav and Potočnik, Jelena",
year = "2022",
abstract = "Један од ефеката интеракције ултра-кратког ласерског снопа са материјалима је формирање паралелних структура на површини (laser-induced parallel surface structures - LIPSS), чији је период мањи од таласне дужине снопа. Уколико се ради о вишеслојним танким филмовима метала, квалитет формираних структура је бољи. Узорак од пет двослојних танких филмова Al и Ti на супстрату Si смо изложили фемтосекундном снопу и запазили формирање две врсте структура које се разликују по облику. Обе су врсте вероватно узроковане појавом површинског плазмонаполаритона на површини најгорњег слоја. Појава плазмона поларитона на површини танких металних филмова и наночестица може да ограничи простирање електромагнетног поља и да појача флуоресцентни сигнал из молекула хемикалије на површини. У зависности од структуре интерфејса за одређивање циљне хемикалије на металној површини флуоресценција побољшана плазмоном (plasmon-enhanced fluorescence, PEF) је привлачан метод за скраћење времена и појачање осетљивости разних аналитичких технологија које се користе у форензици., One of the effects of the interaction of ultrashort laser beam with materials is the forming of laser-induced parallel surface structures (LIPSS), with period less than beam wavelength. For multilayer thin metal films, the quality of formed structures is better. The sample of five bilayers of Al and Ti on Si substrate was exposed to femtosecond beam and noticed the forming of of two types of structures different in shape. Both are most probably the product of surface Plasmon polariton on the surface of most top layer. The occurrence of Plasmon polariton on the surface of thin metal layers and nanoparticles can confine the propagation of electromagnetic field and to amplify the fluorescent signal from molecules of the chemical compound on the surface. Depending on the interface structure for determining the target chemical on metal surface, Plasmon enhanced fluorescence is an attractive method for shortening the time of detection and increasing the sensitivity of various analytical technologies used in forensics.",
publisher = "Belgrade : ETRAN Society, Belgrade : Academic Mind",
journal = "9th International Conference IcETRAN and 66th ETRAN Conference : Proceedings ; June 6-9, 2022 ; Novi Pazar",
title = "Суб-микрометарске паралелне површинске
структуре индуковане фемтосекундним
ласерским снопом у форензици, Sub-micrometer parallel surface structures induced by femtosecond laser beam in forensics",
pages = "901-905",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11857"
}
Kovačević, A., Petrović, S., Lekić, M., Vasić, B., Salatić, B.,& Potočnik, J.. (2022). Суб-микрометарске паралелне површинске
структуре индуковане фемтосекундним
ласерским снопом у форензици. in 9th International Conference IcETRAN and 66th ETRAN Conference : Proceedings ; June 6-9, 2022 ; Novi Pazar
Belgrade : ETRAN Society., 901-905.
https://hdl.handle.net/21.15107/rcub_vinar_11857
Kovačević A, Petrović S, Lekić M, Vasić B, Salatić B, Potočnik J. Суб-микрометарске паралелне површинске
структуре индуковане фемтосекундним
ласерским снопом у форензици. in 9th International Conference IcETRAN and 66th ETRAN Conference : Proceedings ; June 6-9, 2022 ; Novi Pazar. 2022;:901-905.
https://hdl.handle.net/21.15107/rcub_vinar_11857 .
Kovačević, Aleksander, Petrović, Suzana, Lekić, Marina, Vasić, Borislav, Salatić, Branislav, Potočnik, Jelena, "Суб-микрометарске паралелне површинске
структуре индуковане фемтосекундним
ласерским снопом у форензици" in 9th International Conference IcETRAN and 66th ETRAN Conference : Proceedings ; June 6-9, 2022 ; Novi Pazar (2022):901-905,
https://hdl.handle.net/21.15107/rcub_vinar_11857 .

Laser-induced parallel structures on multilayer thin films of Ni, Pd, Ti, Ta and W

Kovačević, Aleksander G.; Petrović, Suzana; Potočnik, Jelena; Lekić, Marina; Salatić, Branislav; Lazović, Vladimir; Pantelić, Dejan; Jelenković, Branislav

(Belgrade : Institute of Physics, 2021)

TY  - CONF
AU  - Kovačević, Aleksander G.
AU  - Petrović, Suzana
AU  - Potočnik, Jelena
AU  - Lekić, Marina
AU  - Salatić, Branislav
AU  - Lazović, Vladimir
AU  - Pantelić, Dejan
AU  - Jelenković, Branislav
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11087
AB  - The interaction of ultrashort laser beam with metal surfaces may induce the generation of periodic structures (LIPSS) with period less than the incoming wavelength, opening wide area of application [1, 2]. The presence of the underneath layer influences the quality of the LIPSS [3] . We have exposed multilayer thin films Ni/Ti, Ni/Pd, W/Ti, Ti/Ta to femtosecond beams of various wavelengths and powers. The interactions have been performed by Mira900 fs laser of Coherent. Detailed surface morphology after irradiation was examined firstly by optical microscopy, and then by scanning electron microscopy (JEOL JSM-7500F, Tokyo, Japan). Two types of structures have been noticed. Their appearance differ in the direction against the polarization direction, in pronounced ablation and in the spatial period, enabling their grouping into LIPSS of higher and lower spatial frequencies. Surface plasmon polariton is seen as the most probable cause of periodic distribution of energy at the surface and consequently to LIPSS.
PB  - Belgrade : Institute of Physics
C3  - 14th Photonics Workshop : Conference : Book of abstracts; March 14-17, 2021; Kopaonik, Serbia
T1  - Laser-induced parallel structures on multilayer thin films of Ni, Pd, Ti, Ta and W
SP  - 13
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11087
ER  - 
@conference{
author = "Kovačević, Aleksander G. and Petrović, Suzana and Potočnik, Jelena and Lekić, Marina and Salatić, Branislav and Lazović, Vladimir and Pantelić, Dejan and Jelenković, Branislav",
year = "2021",
abstract = "The interaction of ultrashort laser beam with metal surfaces may induce the generation of periodic structures (LIPSS) with period less than the incoming wavelength, opening wide area of application [1, 2]. The presence of the underneath layer influences the quality of the LIPSS [3] . We have exposed multilayer thin films Ni/Ti, Ni/Pd, W/Ti, Ti/Ta to femtosecond beams of various wavelengths and powers. The interactions have been performed by Mira900 fs laser of Coherent. Detailed surface morphology after irradiation was examined firstly by optical microscopy, and then by scanning electron microscopy (JEOL JSM-7500F, Tokyo, Japan). Two types of structures have been noticed. Their appearance differ in the direction against the polarization direction, in pronounced ablation and in the spatial period, enabling their grouping into LIPSS of higher and lower spatial frequencies. Surface plasmon polariton is seen as the most probable cause of periodic distribution of energy at the surface and consequently to LIPSS.",
publisher = "Belgrade : Institute of Physics",
journal = "14th Photonics Workshop : Conference : Book of abstracts; March 14-17, 2021; Kopaonik, Serbia",
title = "Laser-induced parallel structures on multilayer thin films of Ni, Pd, Ti, Ta and W",
pages = "13",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11087"
}
Kovačević, A. G., Petrović, S., Potočnik, J., Lekić, M., Salatić, B., Lazović, V., Pantelić, D.,& Jelenković, B.. (2021). Laser-induced parallel structures on multilayer thin films of Ni, Pd, Ti, Ta and W. in 14th Photonics Workshop : Conference : Book of abstracts; March 14-17, 2021; Kopaonik, Serbia
Belgrade : Institute of Physics., 13.
https://hdl.handle.net/21.15107/rcub_vinar_11087
Kovačević AG, Petrović S, Potočnik J, Lekić M, Salatić B, Lazović V, Pantelić D, Jelenković B. Laser-induced parallel structures on multilayer thin films of Ni, Pd, Ti, Ta and W. in 14th Photonics Workshop : Conference : Book of abstracts; March 14-17, 2021; Kopaonik, Serbia. 2021;:13.
https://hdl.handle.net/21.15107/rcub_vinar_11087 .
Kovačević, Aleksander G., Petrović, Suzana, Potočnik, Jelena, Lekić, Marina, Salatić, Branislav, Lazović, Vladimir, Pantelić, Dejan, Jelenković, Branislav, "Laser-induced parallel structures on multilayer thin films of Ni, Pd, Ti, Ta and W" in 14th Photonics Workshop : Conference : Book of abstracts; March 14-17, 2021; Kopaonik, Serbia (2021):13,
https://hdl.handle.net/21.15107/rcub_vinar_11087 .

Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations

Kovačević, Aleksander; Petrović, Suzana; Salatić, Branislav; Lekić, Marina; Vasić, Borislav Z.; Gajić, Radoš; Pantelić, Dejan; Jelenković, Branislav

(2020)

TY  - JOUR
AU  - Kovačević, Aleksander
AU  - Petrović, Suzana
AU  - Salatić, Branislav
AU  - Lekić, Marina
AU  - Vasić, Borislav Z.
AU  - Gajić, Radoš
AU  - Pantelić, Dejan
AU  - Jelenković, Branislav
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9015
AB  - The occurrence of laser-induced periodic surface structures (LIPSS) has been known for a while. Multilayer thin films, like Al/Ti, are suitable for LIPSS formation and attractive for applications—due to their wearing behavior and corrosion resistance; LIPSS generation may improve their properties as well. LIPSS properties depend not only on the material but also on the beam characteristics, like wavelength, polarization and scanning directions, etc. After exposing with NIR femtosecond pulses from Coherent Mira 900 laser system in several beam exposures, we have analyzed the samples of thin metal film systems with Tescan Mira3 SEM and NTegra AFM. The formation of LIPSS is most probably due to the generation of surface plasmon polariton, through the periodic distribution of energy in the interaction zone which lead to thermal processes in layers and interfaces. Two types of LIPSS were generated, which differ in shape, orientation and in ablation pronounced or not. For consecutive interactions in the same direction, LIPSS maintained its orientation, while for orthogonal passes LIPSS with mutually orthogonal orientation were generated. LIPSS period fluctuated between 320 and 380 nm and structures with pronounced ablation have significantly smaller width. Probable mechanism is that for greater accumulated energy pronounced ablation takes place giving LIPSS in the form of trenches or grooves, while for less accumulated energy the buildup of the material—probably due to pronounced oxidation—lead to LIPSS in the form of hills or ridges.
T2  - Optical and Quantum Electronics
T1  - Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations
VL  - 52
IS  - 6
SP  - 301
DO  - 10.1007/s11082-020-02398-2
ER  - 
@article{
author = "Kovačević, Aleksander and Petrović, Suzana and Salatić, Branislav and Lekić, Marina and Vasić, Borislav Z. and Gajić, Radoš and Pantelić, Dejan and Jelenković, Branislav",
year = "2020",
abstract = "The occurrence of laser-induced periodic surface structures (LIPSS) has been known for a while. Multilayer thin films, like Al/Ti, are suitable for LIPSS formation and attractive for applications—due to their wearing behavior and corrosion resistance; LIPSS generation may improve their properties as well. LIPSS properties depend not only on the material but also on the beam characteristics, like wavelength, polarization and scanning directions, etc. After exposing with NIR femtosecond pulses from Coherent Mira 900 laser system in several beam exposures, we have analyzed the samples of thin metal film systems with Tescan Mira3 SEM and NTegra AFM. The formation of LIPSS is most probably due to the generation of surface plasmon polariton, through the periodic distribution of energy in the interaction zone which lead to thermal processes in layers and interfaces. Two types of LIPSS were generated, which differ in shape, orientation and in ablation pronounced or not. For consecutive interactions in the same direction, LIPSS maintained its orientation, while for orthogonal passes LIPSS with mutually orthogonal orientation were generated. LIPSS period fluctuated between 320 and 380 nm and structures with pronounced ablation have significantly smaller width. Probable mechanism is that for greater accumulated energy pronounced ablation takes place giving LIPSS in the form of trenches or grooves, while for less accumulated energy the buildup of the material—probably due to pronounced oxidation—lead to LIPSS in the form of hills or ridges.",
journal = "Optical and Quantum Electronics",
title = "Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations",
volume = "52",
number = "6",
pages = "301",
doi = "10.1007/s11082-020-02398-2"
}
Kovačević, A., Petrović, S., Salatić, B., Lekić, M., Vasić, B. Z., Gajić, R., Pantelić, D.,& Jelenković, B.. (2020). Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations. in Optical and Quantum Electronics, 52(6), 301.
https://doi.org/10.1007/s11082-020-02398-2
Kovačević A, Petrović S, Salatić B, Lekić M, Vasić BZ, Gajić R, Pantelić D, Jelenković B. Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations. in Optical and Quantum Electronics. 2020;52(6):301.
doi:10.1007/s11082-020-02398-2 .
Kovačević, Aleksander, Petrović, Suzana, Salatić, Branislav, Lekić, Marina, Vasić, Borislav Z., Gajić, Radoš, Pantelić, Dejan, Jelenković, Branislav, "Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations" in Optical and Quantum Electronics, 52, no. 6 (2020):301,
https://doi.org/10.1007/s11082-020-02398-2 . .
3
3

Molding Wetting by Laser-Induced Nanostructures

Kovačević, Aleksander; Petrović, Suzana; Mimidis, Alexandros; Stratakis, Emmanuel; Pantelić, Dejan; Kolarić, Branko

(2020)

TY  - JOUR
AU  - Kovačević, Aleksander
AU  - Petrović, Suzana
AU  - Mimidis, Alexandros
AU  - Stratakis, Emmanuel
AU  - Pantelić, Dejan
AU  - Kolarić, Branko
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9632
AB  - The influence of material characteristics—i.e., type or surface texture—to wetting properties is nowadays increased by the implementation of ultrafast lasers for nanostructuring. In this account, we exposed multilayer thin metal film samples of different materials to a femtosecond laser beam at a 1030 nm wavelength. The interaction generated high-quality laser-induced periodic surface structures (LIPSS) of spatial periods between 740 and 790 nm and with maximal average corrugation height below 100 nm. The contact angle (CA) values of the water droplets on the surface were estimated and the values between unmodified and modified samples were compared. Even though the laser interaction changed both the surface morphology and the chemical composition, the wetting properties were predominantly influenced by the small change in morphology causing the increase in the contact angle of ~80%, which could not be explained classically. The influence of both surface corrugation and chemical composition to the wetting properties has been thoroughly investigated, discussed and explained. The presented results clearly confirm that femtosecond patterning can be used to mold wetting properties.
T2  - Applied Sciences
T1  - Molding Wetting by Laser-Induced Nanostructures
VL  - 10
IS  - 17
SP  - 6008
DO  - 10.3390/app10176008
ER  - 
@article{
author = "Kovačević, Aleksander and Petrović, Suzana and Mimidis, Alexandros and Stratakis, Emmanuel and Pantelić, Dejan and Kolarić, Branko",
year = "2020",
abstract = "The influence of material characteristics—i.e., type or surface texture—to wetting properties is nowadays increased by the implementation of ultrafast lasers for nanostructuring. In this account, we exposed multilayer thin metal film samples of different materials to a femtosecond laser beam at a 1030 nm wavelength. The interaction generated high-quality laser-induced periodic surface structures (LIPSS) of spatial periods between 740 and 790 nm and with maximal average corrugation height below 100 nm. The contact angle (CA) values of the water droplets on the surface were estimated and the values between unmodified and modified samples were compared. Even though the laser interaction changed both the surface morphology and the chemical composition, the wetting properties were predominantly influenced by the small change in morphology causing the increase in the contact angle of ~80%, which could not be explained classically. The influence of both surface corrugation and chemical composition to the wetting properties has been thoroughly investigated, discussed and explained. The presented results clearly confirm that femtosecond patterning can be used to mold wetting properties.",
journal = "Applied Sciences",
title = "Molding Wetting by Laser-Induced Nanostructures",
volume = "10",
number = "17",
pages = "6008",
doi = "10.3390/app10176008"
}
Kovačević, A., Petrović, S., Mimidis, A., Stratakis, E., Pantelić, D.,& Kolarić, B.. (2020). Molding Wetting by Laser-Induced Nanostructures. in Applied Sciences, 10(17), 6008.
https://doi.org/10.3390/app10176008
Kovačević A, Petrović S, Mimidis A, Stratakis E, Pantelić D, Kolarić B. Molding Wetting by Laser-Induced Nanostructures. in Applied Sciences. 2020;10(17):6008.
doi:10.3390/app10176008 .
Kovačević, Aleksander, Petrović, Suzana, Mimidis, Alexandros, Stratakis, Emmanuel, Pantelić, Dejan, Kolarić, Branko, "Molding Wetting by Laser-Induced Nanostructures" in Applied Sciences, 10, no. 17 (2020):6008,
https://doi.org/10.3390/app10176008 . .
1
4
4

Photon diagnostics at the FLASH THz beamline

Pan, Rui; Zapolnova, Ekaterina; Golz, Torsten; Krmpot, Aleksandar J.; Rabasović, Mihailo D.; Petrović, Jovana S.; Asgekar, Vivek; Faatz, Bart; Tavella, Franz; Perucchi, Andrea; Kovalev, Sergey; Green, Bertram Windisch; Geloni, Gianluca; Tanikawa, Takanori; Yurkov, Mikhail; Schneidmiller, Evgeny; Gensch, Michael; Stojanović, Nikola

(2019)

TY  - JOUR
AU  - Pan, Rui
AU  - Zapolnova, Ekaterina
AU  - Golz, Torsten
AU  - Krmpot, Aleksandar J.
AU  - Rabasović, Mihailo D.
AU  - Petrović, Jovana S.
AU  - Asgekar, Vivek
AU  - Faatz, Bart
AU  - Tavella, Franz
AU  - Perucchi, Andrea
AU  - Kovalev, Sergey
AU  - Green, Bertram Windisch
AU  - Geloni, Gianluca
AU  - Tanikawa, Takanori
AU  - Yurkov, Mikhail
AU  - Schneidmiller, Evgeny
AU  - Gensch, Michael
AU  - Stojanović, Nikola
PY  - 2019
UR  - http://scripts.iucr.org/cgi-bin/paper?S1600577519003412
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8197
AB  - The THz beamline at FLASH, DESY, provides both tunable (1–300 THz) narrow-bandwidth (∼10%) and broad-bandwidth intense (up to 150 uJ) THz pulses delivered in 1 MHz bursts and naturally synchronized with free-electron laser X-ray pulses. Combination of these pulses, along with the auxiliary NIR and VIS ultrashort lasers, supports a plethora of dynamic investigations in physics, material science and biology. The unique features of the FLASH THz pulses and the accelerator source, however, bring along a set of challenges in the diagnostics of their key parameters: pulse energy, spectral, temporal and spatial profiles. Here, these challenges are discussed and the pulse diagnostic tools developed at FLASH are presented. In particular, a radiometric power measurement is presented that enables the derivation of the average pulse energy within a pulse burst across the spectral range, jitter-corrected electro-optical sampling for the full spectro-temporal pulse characterization, spatial beam profiling along the beam transport line and at the sample, and a lamellar grating based Fourier transform infrared spectrometer for the on-line assessment of the average THz pulse spectra. Corresponding measurement results provide a comprehensive insight into the THz beamline capabilities.
T2  - Journal of Synchrotron Radiation
T1  - Photon diagnostics at the FLASH THz beamline
VL  - 26
IS  - 3
SP  - 700
EP  - 707
DO  - 10.1107/S1600577519003412
ER  - 
@article{
author = "Pan, Rui and Zapolnova, Ekaterina and Golz, Torsten and Krmpot, Aleksandar J. and Rabasović, Mihailo D. and Petrović, Jovana S. and Asgekar, Vivek and Faatz, Bart and Tavella, Franz and Perucchi, Andrea and Kovalev, Sergey and Green, Bertram Windisch and Geloni, Gianluca and Tanikawa, Takanori and Yurkov, Mikhail and Schneidmiller, Evgeny and Gensch, Michael and Stojanović, Nikola",
year = "2019",
abstract = "The THz beamline at FLASH, DESY, provides both tunable (1–300 THz) narrow-bandwidth (∼10%) and broad-bandwidth intense (up to 150 uJ) THz pulses delivered in 1 MHz bursts and naturally synchronized with free-electron laser X-ray pulses. Combination of these pulses, along with the auxiliary NIR and VIS ultrashort lasers, supports a plethora of dynamic investigations in physics, material science and biology. The unique features of the FLASH THz pulses and the accelerator source, however, bring along a set of challenges in the diagnostics of their key parameters: pulse energy, spectral, temporal and spatial profiles. Here, these challenges are discussed and the pulse diagnostic tools developed at FLASH are presented. In particular, a radiometric power measurement is presented that enables the derivation of the average pulse energy within a pulse burst across the spectral range, jitter-corrected electro-optical sampling for the full spectro-temporal pulse characterization, spatial beam profiling along the beam transport line and at the sample, and a lamellar grating based Fourier transform infrared spectrometer for the on-line assessment of the average THz pulse spectra. Corresponding measurement results provide a comprehensive insight into the THz beamline capabilities.",
journal = "Journal of Synchrotron Radiation",
title = "Photon diagnostics at the FLASH THz beamline",
volume = "26",
number = "3",
pages = "700-707",
doi = "10.1107/S1600577519003412"
}
Pan, R., Zapolnova, E., Golz, T., Krmpot, A. J., Rabasović, M. D., Petrović, J. S., Asgekar, V., Faatz, B., Tavella, F., Perucchi, A., Kovalev, S., Green, B. W., Geloni, G., Tanikawa, T., Yurkov, M., Schneidmiller, E., Gensch, M.,& Stojanović, N.. (2019). Photon diagnostics at the FLASH THz beamline. in Journal of Synchrotron Radiation, 26(3), 700-707.
https://doi.org/10.1107/S1600577519003412
Pan R, Zapolnova E, Golz T, Krmpot AJ, Rabasović MD, Petrović JS, Asgekar V, Faatz B, Tavella F, Perucchi A, Kovalev S, Green BW, Geloni G, Tanikawa T, Yurkov M, Schneidmiller E, Gensch M, Stojanović N. Photon diagnostics at the FLASH THz beamline. in Journal of Synchrotron Radiation. 2019;26(3):700-707.
doi:10.1107/S1600577519003412 .
Pan, Rui, Zapolnova, Ekaterina, Golz, Torsten, Krmpot, Aleksandar J., Rabasović, Mihailo D., Petrović, Jovana S., Asgekar, Vivek, Faatz, Bart, Tavella, Franz, Perucchi, Andrea, Kovalev, Sergey, Green, Bertram Windisch, Geloni, Gianluca, Tanikawa, Takanori, Yurkov, Mikhail, Schneidmiller, Evgeny, Gensch, Michael, Stojanović, Nikola, "Photon diagnostics at the FLASH THz beamline" in Journal of Synchrotron Radiation, 26, no. 3 (2019):700-707,
https://doi.org/10.1107/S1600577519003412 . .
1
21
11
21

Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations

Kovačević, Aleksander; Petrović, Suzana; Salatić, Branislav; Lekić, Marina; Vasić, Borislav Z.; Gajić, Radoš; Pantelić, Dejan; Jelenković, Branislav

(Belgrade : Vinča Institute of Nuclear Sciences, University of Belgrade, 2019)

TY  - CONF
AU  - Kovačević, Aleksander
AU  - Petrović, Suzana
AU  - Salatić, Branislav
AU  - Lekić, Marina
AU  - Vasić, Borislav Z.
AU  - Gajić, Radoš
AU  - Pantelić, Dejan
AU  - Jelenković, Branislav
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11884
AB  - The occurrence of laser-induced periodic surface structures (LIPSS) has been known for a while [1]. Multilayer thin films, like Al/Ti, are suitable for LIPSS formation and attractive for applications – due to their wearing behavior and corrosion resistance; LIPSS generation may improve their properties as well [2, 3]. LIPSS properties depend not only on the material but also on the beam characteristics, like wavelength, polarization and scanning directions, etc. [4]. After exposing with NIR femtosecond pulses from Coherent Mira 900 laser system in several beam exposures, we have analyzed the samples of thin metal film systems with Tescan Mira3 SEM and NTegra AFM. The formation of LIPSS is most probably due to the generation of surface plasmon polariton, through the periodic distribution of energy in the interaction zone which lead to thermal processes in layers and interfaces. Two types of LIPSS were generated, which differ in shape, orientation and in ablation pronounced or not. For consecutive interactions in the same direction, LIPSS maintained its orientation, while for orthogonal passes LIPSS with mutually orthogonal orientation were generated. LIPSS period fluctuated between 320 and 380 nm and structures with pronounced ablation have significantly smaller width. Probable mechanism is that for greater accumulated energy pronounced ablation takes place giving LIPSS in the form of “trenches”, while for less accumulated energy the buildup of the material – probably due to pronounced oxidation – lead to LIPSS in the form of “hills”.
PB  - Belgrade : Vinča Institute of Nuclear Sciences, University of Belgrade
C3  - PHOTONICA2019 : 7th International School and Conference on Photonics & Machine Learning with Photonics Symposium : Book of abstracts
T1  - Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations
SP  - 160
EP  - 160
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11884
ER  - 
@conference{
author = "Kovačević, Aleksander and Petrović, Suzana and Salatić, Branislav and Lekić, Marina and Vasić, Borislav Z. and Gajić, Radoš and Pantelić, Dejan and Jelenković, Branislav",
year = "2019",
abstract = "The occurrence of laser-induced periodic surface structures (LIPSS) has been known for a while [1]. Multilayer thin films, like Al/Ti, are suitable for LIPSS formation and attractive for applications – due to their wearing behavior and corrosion resistance; LIPSS generation may improve their properties as well [2, 3]. LIPSS properties depend not only on the material but also on the beam characteristics, like wavelength, polarization and scanning directions, etc. [4]. After exposing with NIR femtosecond pulses from Coherent Mira 900 laser system in several beam exposures, we have analyzed the samples of thin metal film systems with Tescan Mira3 SEM and NTegra AFM. The formation of LIPSS is most probably due to the generation of surface plasmon polariton, through the periodic distribution of energy in the interaction zone which lead to thermal processes in layers and interfaces. Two types of LIPSS were generated, which differ in shape, orientation and in ablation pronounced or not. For consecutive interactions in the same direction, LIPSS maintained its orientation, while for orthogonal passes LIPSS with mutually orthogonal orientation were generated. LIPSS period fluctuated between 320 and 380 nm and structures with pronounced ablation have significantly smaller width. Probable mechanism is that for greater accumulated energy pronounced ablation takes place giving LIPSS in the form of “trenches”, while for less accumulated energy the buildup of the material – probably due to pronounced oxidation – lead to LIPSS in the form of “hills”.",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences, University of Belgrade",
journal = "PHOTONICA2019 : 7th International School and Conference on Photonics & Machine Learning with Photonics Symposium : Book of abstracts",
title = "Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations",
pages = "160-160",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11884"
}
Kovačević, A., Petrović, S., Salatić, B., Lekić, M., Vasić, B. Z., Gajić, R., Pantelić, D.,& Jelenković, B.. (2019). Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations. in PHOTONICA2019 : 7th International School and Conference on Photonics & Machine Learning with Photonics Symposium : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences, University of Belgrade., 160-160.
https://hdl.handle.net/21.15107/rcub_vinar_11884
Kovačević A, Petrović S, Salatić B, Lekić M, Vasić BZ, Gajić R, Pantelić D, Jelenković B. Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations. in PHOTONICA2019 : 7th International School and Conference on Photonics & Machine Learning with Photonics Symposium : Book of abstracts. 2019;:160-160.
https://hdl.handle.net/21.15107/rcub_vinar_11884 .
Kovačević, Aleksander, Petrović, Suzana, Salatić, Branislav, Lekić, Marina, Vasić, Borislav Z., Gajić, Radoš, Pantelić, Dejan, Jelenković, Branislav, "Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations" in PHOTONICA2019 : 7th International School and Conference on Photonics & Machine Learning with Photonics Symposium : Book of abstracts (2019):160-160,
https://hdl.handle.net/21.15107/rcub_vinar_11884 .

Inducing LIPSS by multi-pass and cross-directional scanning of femtosecond beam over surface of thin metal films

Kovačević, A. G.; Petrović, Suzana; Lekić, M.; Jelenković, B. M.

(Moscow : Lebedev Physical Institute, 2018)

TY  - CONF
AU  - Kovačević, A. G.
AU  - Petrović, Suzana
AU  - Lekić, M.
AU  - Jelenković, B. M.
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12445
AB  - During interaction of femtosecond laser beam with metal surfaces, laser induced pe- riodic nanostructures, LIPSS can be formed, which may improve properties of materials. Having excellent mechanical properties, multilayer thin films, like 5x(Al/Ti)@Si, are con- venient for forming of high quality LIPSS [1] due to their multilayer structure. We have exposed the multilayer thin film metal systems 5x(Al/Ti)@Si with femtosecond beam from the laser system Coherent Mira 900 in NIR with various scanning configurations [2]. The irradiated samples have been analyzed by Tescan Mira3 SEM. The beam scanned over the surface of the samples with multi-pass and cross-directional scanning configurations with the change of polarization direction. The formation of LIPSS is most probably due to the occurence of surface plasmon polariton, which leads to the periodic distribution of energy on the sample surface. The orientation of the LIPSS is related to the direction of the beam polarization. During multi-pass scanning, LIPSS maintained its configuration. The preservation of structures occured to some extent. Depending on the accumulated energy, two forms of LIPSS were generated: “hills”, for less accumulation, and “trenches” for greater accumulation. “Hills” are non-ablative, probably are due to the build-up of the material and are parallel to the polarization direction. “Trenches” are formed by ablation and are perpendicular to the polarization direction. During cross-directional scanning, LIPSS of orthogonal directions have been generated. The value of the “hills” period was around 360 nm and the width was ∼285 nm. The values of “trenches” period fluctuated between 320 and 380 nm, while width was between 85 and 45 nm. Proposed mechanism is that, for less accumulated energy, “hills” formed, while more accumulated energy leads to the ablation and formation of “trenches”.
PB  - Moscow : Lebedev Physical Institute
C3  - UltrafastLight-2018 : International Conference on Ultrafast Optical Science : Book of Abstracts
T1  - Inducing LIPSS by multi-pass and cross-directional scanning of femtosecond beam over surface of thin metal films
SP  - 108
EP  - 108
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12445
ER  - 
@conference{
author = "Kovačević, A. G. and Petrović, Suzana and Lekić, M. and Jelenković, B. M.",
year = "2018",
abstract = "During interaction of femtosecond laser beam with metal surfaces, laser induced pe- riodic nanostructures, LIPSS can be formed, which may improve properties of materials. Having excellent mechanical properties, multilayer thin films, like 5x(Al/Ti)@Si, are con- venient for forming of high quality LIPSS [1] due to their multilayer structure. We have exposed the multilayer thin film metal systems 5x(Al/Ti)@Si with femtosecond beam from the laser system Coherent Mira 900 in NIR with various scanning configurations [2]. The irradiated samples have been analyzed by Tescan Mira3 SEM. The beam scanned over the surface of the samples with multi-pass and cross-directional scanning configurations with the change of polarization direction. The formation of LIPSS is most probably due to the occurence of surface plasmon polariton, which leads to the periodic distribution of energy on the sample surface. The orientation of the LIPSS is related to the direction of the beam polarization. During multi-pass scanning, LIPSS maintained its configuration. The preservation of structures occured to some extent. Depending on the accumulated energy, two forms of LIPSS were generated: “hills”, for less accumulation, and “trenches” for greater accumulation. “Hills” are non-ablative, probably are due to the build-up of the material and are parallel to the polarization direction. “Trenches” are formed by ablation and are perpendicular to the polarization direction. During cross-directional scanning, LIPSS of orthogonal directions have been generated. The value of the “hills” period was around 360 nm and the width was ∼285 nm. The values of “trenches” period fluctuated between 320 and 380 nm, while width was between 85 and 45 nm. Proposed mechanism is that, for less accumulated energy, “hills” formed, while more accumulated energy leads to the ablation and formation of “trenches”.",
publisher = "Moscow : Lebedev Physical Institute",
journal = "UltrafastLight-2018 : International Conference on Ultrafast Optical Science : Book of Abstracts",
title = "Inducing LIPSS by multi-pass and cross-directional scanning of femtosecond beam over surface of thin metal films",
pages = "108-108",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12445"
}
Kovačević, A. G., Petrović, S., Lekić, M.,& Jelenković, B. M.. (2018). Inducing LIPSS by multi-pass and cross-directional scanning of femtosecond beam over surface of thin metal films. in UltrafastLight-2018 : International Conference on Ultrafast Optical Science : Book of Abstracts
Moscow : Lebedev Physical Institute., 108-108.
https://hdl.handle.net/21.15107/rcub_vinar_12445
Kovačević AG, Petrović S, Lekić M, Jelenković BM. Inducing LIPSS by multi-pass and cross-directional scanning of femtosecond beam over surface of thin metal films. in UltrafastLight-2018 : International Conference on Ultrafast Optical Science : Book of Abstracts. 2018;:108-108.
https://hdl.handle.net/21.15107/rcub_vinar_12445 .
Kovačević, A. G., Petrović, Suzana, Lekić, M., Jelenković, B. M., "Inducing LIPSS by multi-pass and cross-directional scanning of femtosecond beam over surface of thin metal films" in UltrafastLight-2018 : International Conference on Ultrafast Optical Science : Book of Abstracts (2018):108-108,
https://hdl.handle.net/21.15107/rcub_vinar_12445 .

Effects of temperature and pressure on luminescent properties of Sr 2 CeO 4: Eu3+ nanophosphor

Vlašić, Ana; Šević, Dragutin M.; Rabasović, Maja S.; Križan, Janez; Savić-Šević, Svetlana N.; Rabasović, Mihailo D.; Mitrić, Miodrag; Marinković, Bratislav P.; Nikolić, Marko G.

(2018)

TY  - JOUR
AU  - Vlašić, Ana
AU  - Šević, Dragutin M.
AU  - Rabasović, Maja S.
AU  - Križan, Janez
AU  - Savić-Šević, Svetlana N.
AU  - Rabasović, Mihailo D.
AU  - Mitrić, Miodrag
AU  - Marinković, Bratislav P.
AU  - Nikolić, Marko G.
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7625
AB  - In this paper we describe the synthesis and characterization of the Sr2CeO4:Eu3+ nanopowder and possibilities of its application for temperature and high pressure sensing. The material was prepared using simple solution combustion synthesis. X-ray powder diffraction (XRD), scanning electron microscope (SEM) and photoluminescence (PL) techniques have been used to confirm and characterize the prepared material. Time resolved analysis of emission spectra was achieved by using the streak camera system. Measured lifetime values of luminescence emission and the intensity ratios of spectral lines were used for determining the calibration curves for remote temperature sensing. We have analyzed sensitivity improvement of the intensity ratio method by using a temporal evolution of emission lines and simulation of delayed gating of one of them. Pressure effects on optical properties of Sr2CeO4: Eu3+ nanophosphor are also investigated.
T2  - Journal of Luminescence
T1  - Effects of temperature and pressure on luminescent properties of Sr 2 CeO 4: Eu3+ nanophosphor
VL  - 199
SP  - 285
EP  - 292
DO  - 10.1016/j.jlumin.2018.03.061
ER  - 
@article{
author = "Vlašić, Ana and Šević, Dragutin M. and Rabasović, Maja S. and Križan, Janez and Savić-Šević, Svetlana N. and Rabasović, Mihailo D. and Mitrić, Miodrag and Marinković, Bratislav P. and Nikolić, Marko G.",
year = "2018",
abstract = "In this paper we describe the synthesis and characterization of the Sr2CeO4:Eu3+ nanopowder and possibilities of its application for temperature and high pressure sensing. The material was prepared using simple solution combustion synthesis. X-ray powder diffraction (XRD), scanning electron microscope (SEM) and photoluminescence (PL) techniques have been used to confirm and characterize the prepared material. Time resolved analysis of emission spectra was achieved by using the streak camera system. Measured lifetime values of luminescence emission and the intensity ratios of spectral lines were used for determining the calibration curves for remote temperature sensing. We have analyzed sensitivity improvement of the intensity ratio method by using a temporal evolution of emission lines and simulation of delayed gating of one of them. Pressure effects on optical properties of Sr2CeO4: Eu3+ nanophosphor are also investigated.",
journal = "Journal of Luminescence",
title = "Effects of temperature and pressure on luminescent properties of Sr 2 CeO 4: Eu3+ nanophosphor",
volume = "199",
pages = "285-292",
doi = "10.1016/j.jlumin.2018.03.061"
}
Vlašić, A., Šević, D. M., Rabasović, M. S., Križan, J., Savić-Šević, S. N., Rabasović, M. D., Mitrić, M., Marinković, B. P.,& Nikolić, M. G.. (2018). Effects of temperature and pressure on luminescent properties of Sr 2 CeO 4: Eu3+ nanophosphor. in Journal of Luminescence, 199, 285-292.
https://doi.org/10.1016/j.jlumin.2018.03.061
Vlašić A, Šević DM, Rabasović MS, Križan J, Savić-Šević SN, Rabasović MD, Mitrić M, Marinković BP, Nikolić MG. Effects of temperature and pressure on luminescent properties of Sr 2 CeO 4: Eu3+ nanophosphor. in Journal of Luminescence. 2018;199:285-292.
doi:10.1016/j.jlumin.2018.03.061 .
Vlašić, Ana, Šević, Dragutin M., Rabasović, Maja S., Križan, Janez, Savić-Šević, Svetlana N., Rabasović, Mihailo D., Mitrić, Miodrag, Marinković, Bratislav P., Nikolić, Marko G., "Effects of temperature and pressure on luminescent properties of Sr 2 CeO 4: Eu3+ nanophosphor" in Journal of Luminescence, 199 (2018):285-292,
https://doi.org/10.1016/j.jlumin.2018.03.061 . .
23
15
22

Luminescence thermometry via the two-dopant intensity ratio of Y2O3: Er3+, Eu3+

Rabasović, Mihailo D.; Murić, Branka D.; Celebonovic, Vladan; Mitrić, Miodrag; Jelenković, Branislav; Nikolić, Marko G.

(2016)

TY  - JOUR
AU  - Rabasović, Mihailo D.
AU  - Murić, Branka D.
AU  - Celebonovic, Vladan
AU  - Mitrić, Miodrag
AU  - Jelenković, Branislav
AU  - Nikolić, Marko G.
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1305
AB  - In this work we investigated the photoluminescence properties of Y2O3: Er3+, Eu3+ as a function of temperature and the possibility to use this material as a temperature sensor. Photoluminescence emission measurements with 532 nm laser excitation were recorded in the temperature range from 303 up to 573 K. The measured intensity ratio of erbium S-4(3/2) - GT I-4(15/ 2) and europium D-5(0) - GT F-7(2) emission lines was used for determination of the temperature calibration curve. These emission lines are intense, narrow and well defined. The distance between the lines, being 47 nm, can be easily measured even with a low-resolution spectrometer. The calculated relative sensitivity of the temperature sensor was 1.4% K-1 at 303 K, in the physiological temperature range, meaning that it could be successfully applied in biological studies.
T2  - Journal of Physics. D: Applied Physics
T1  - Luminescence thermometry via the two-dopant intensity ratio of Y2O3: Er3+, Eu3+
VL  - 49
IS  - 48
DO  - 10.1088/0022-3727/49/48/485104
ER  - 
@article{
author = "Rabasović, Mihailo D. and Murić, Branka D. and Celebonovic, Vladan and Mitrić, Miodrag and Jelenković, Branislav and Nikolić, Marko G.",
year = "2016",
abstract = "In this work we investigated the photoluminescence properties of Y2O3: Er3+, Eu3+ as a function of temperature and the possibility to use this material as a temperature sensor. Photoluminescence emission measurements with 532 nm laser excitation were recorded in the temperature range from 303 up to 573 K. The measured intensity ratio of erbium S-4(3/2) - GT I-4(15/ 2) and europium D-5(0) - GT F-7(2) emission lines was used for determination of the temperature calibration curve. These emission lines are intense, narrow and well defined. The distance between the lines, being 47 nm, can be easily measured even with a low-resolution spectrometer. The calculated relative sensitivity of the temperature sensor was 1.4% K-1 at 303 K, in the physiological temperature range, meaning that it could be successfully applied in biological studies.",
journal = "Journal of Physics. D: Applied Physics",
title = "Luminescence thermometry via the two-dopant intensity ratio of Y2O3: Er3+, Eu3+",
volume = "49",
number = "48",
doi = "10.1088/0022-3727/49/48/485104"
}
Rabasović, M. D., Murić, B. D., Celebonovic, V., Mitrić, M., Jelenković, B.,& Nikolić, M. G.. (2016). Luminescence thermometry via the two-dopant intensity ratio of Y2O3: Er3+, Eu3+. in Journal of Physics. D: Applied Physics, 49(48).
https://doi.org/10.1088/0022-3727/49/48/485104
Rabasović MD, Murić BD, Celebonovic V, Mitrić M, Jelenković B, Nikolić MG. Luminescence thermometry via the two-dopant intensity ratio of Y2O3: Er3+, Eu3+. in Journal of Physics. D: Applied Physics. 2016;49(48).
doi:10.1088/0022-3727/49/48/485104 .
Rabasović, Mihailo D., Murić, Branka D., Celebonovic, Vladan, Mitrić, Miodrag, Jelenković, Branislav, Nikolić, Marko G., "Luminescence thermometry via the two-dopant intensity ratio of Y2O3: Er3+, Eu3+" in Journal of Physics. D: Applied Physics, 49, no. 48 (2016),
https://doi.org/10.1088/0022-3727/49/48/485104 . .
20
15
18

Single- and dual-wavelength laser pulses induced modification in 10x(Al/Ti)/Si multilayer system

Salatić, Branislav; Petrović, Suzana; Peruško, Davor; Čekada, Miha; Panjan, Peter; Pantelić, Dejan; Jelenković, Branislav

(Elsevier, 2016)

TY  - JOUR
AU  - Salatić, Branislav
AU  - Petrović, Suzana
AU  - Peruško, Davor
AU  - Čekada, Miha
AU  - Panjan, Peter
AU  - Pantelić, Dejan
AU  - Jelenković, Branislav
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/858
AB  - The surface morphology of the ablation craters created in the multilayer 10x(Al/Ti)/Si system by nanosecond laser pulses at single- and dual wavelength has been studied experimentally and numerically. A complex multilayer thin film including ten (Al/Ti) bilayers deposited by ion sputtering on Si(1 0 0) substrate to a total thickness of 260 nm were illuminated at different laser irradiance in the range 0.25-3.5 x 10(9)W cm(-2). Single pulse laser irradiation was done at normal incidence in air, with the single wavelength, either at 532 nm or 1064 nm or with both laser light simultaneously in the ratio of 1: 10 for energy per pulse between second harmonic and 1064 nm. Most of the absorbed laser energy was rapidly transformed into heat, producing intensive modifications of composition and morphology on the sample surface. The results show an increase in surface roughness, formation of specific nanostructures, appearance of hydrodynamic features and ablation of surface material with crater formation. Applying a small fraction (10%) of the second harmonic in dual-wavelength pulses, a modification of the 10x(Al/Ti)/Si system by a single laser pulse was reflected in the formation of wider and/or deeper craters. Numerical calculations show that the main physical mechanism in ablation process is normal evaporation without phase explosion. The calculated and experimental results agree relatively well for the whole irradiance range, what makes the model applicable to complex Al/Ti multilayer systems. (C) 2015 Elsevier B.V. All rights reserved.
PB  - Elsevier
T2  - Applied Surface Science
T1  - Single- and dual-wavelength laser pulses induced modification in 10x(Al/Ti)/Si multilayer system
VL  - 360
SP  - 559
EP  - 565
DO  - 10.1016/j.apsusc.2015.10.203
ER  - 
@article{
author = "Salatić, Branislav and Petrović, Suzana and Peruško, Davor and Čekada, Miha and Panjan, Peter and Pantelić, Dejan and Jelenković, Branislav",
year = "2016",
abstract = "The surface morphology of the ablation craters created in the multilayer 10x(Al/Ti)/Si system by nanosecond laser pulses at single- and dual wavelength has been studied experimentally and numerically. A complex multilayer thin film including ten (Al/Ti) bilayers deposited by ion sputtering on Si(1 0 0) substrate to a total thickness of 260 nm were illuminated at different laser irradiance in the range 0.25-3.5 x 10(9)W cm(-2). Single pulse laser irradiation was done at normal incidence in air, with the single wavelength, either at 532 nm or 1064 nm or with both laser light simultaneously in the ratio of 1: 10 for energy per pulse between second harmonic and 1064 nm. Most of the absorbed laser energy was rapidly transformed into heat, producing intensive modifications of composition and morphology on the sample surface. The results show an increase in surface roughness, formation of specific nanostructures, appearance of hydrodynamic features and ablation of surface material with crater formation. Applying a small fraction (10%) of the second harmonic in dual-wavelength pulses, a modification of the 10x(Al/Ti)/Si system by a single laser pulse was reflected in the formation of wider and/or deeper craters. Numerical calculations show that the main physical mechanism in ablation process is normal evaporation without phase explosion. The calculated and experimental results agree relatively well for the whole irradiance range, what makes the model applicable to complex Al/Ti multilayer systems. (C) 2015 Elsevier B.V. All rights reserved.",
publisher = "Elsevier",
journal = "Applied Surface Science",
title = "Single- and dual-wavelength laser pulses induced modification in 10x(Al/Ti)/Si multilayer system",
volume = "360",
pages = "559-565",
doi = "10.1016/j.apsusc.2015.10.203"
}
Salatić, B., Petrović, S., Peruško, D., Čekada, M., Panjan, P., Pantelić, D.,& Jelenković, B.. (2016). Single- and dual-wavelength laser pulses induced modification in 10x(Al/Ti)/Si multilayer system. in Applied Surface Science
Elsevier., 360, 559-565.
https://doi.org/10.1016/j.apsusc.2015.10.203
Salatić B, Petrović S, Peruško D, Čekada M, Panjan P, Pantelić D, Jelenković B. Single- and dual-wavelength laser pulses induced modification in 10x(Al/Ti)/Si multilayer system. in Applied Surface Science. 2016;360:559-565.
doi:10.1016/j.apsusc.2015.10.203 .
Salatić, Branislav, Petrović, Suzana, Peruško, Davor, Čekada, Miha, Panjan, Peter, Pantelić, Dejan, Jelenković, Branislav, "Single- and dual-wavelength laser pulses induced modification in 10x(Al/Ti)/Si multilayer system" in Applied Surface Science, 360 (2016):559-565,
https://doi.org/10.1016/j.apsusc.2015.10.203 . .
3
3
4

Laser irradiation of 10x(Ni/Ti)/Si multilayers at different wavelengths

Salatić, Branislav; Petrović, Suzana; Peruško, Davor; Čekada, Miha; Jelenković, Branislav; Pantelić, Dejan

(2016)

TY  - JOUR
AU  - Salatić, Branislav
AU  - Petrović, Suzana
AU  - Peruško, Davor
AU  - Čekada, Miha
AU  - Jelenković, Branislav
AU  - Pantelić, Dejan
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1108
AB  - A study of the effects of laser irradiation on the morphology and composition of Ni/Ti multilayers induced by nanosecond laser pulses at different wavelengths is reported. Irradiation of complex 109(Ni/Ti)/Si sample was done by a Nd:YAG laser which operate at a 1064 nm wavelength, frequency doubled wavelength (532 nm) and dual-wavelength (1064 and 532 nm). The following surface morphological changes were observed: (1) ablation of the thin film during the first laser pulse and (2) appearance of some nanostructures (mosaic structure) in the irradiated region. After action of one pulse, the boundary of damage area was relatively sharp at low pulse energy, whereas it was diffuse after irradiation with higher energy per pulse. The results obtained show that laser irradiation induced mixing between Ni and Ti layers which creates conditions for the formation of intermetallic compounds. A numerical model was used to predict ablation depths and temperatures inside the material during the time. The model prediction shows a close agreement with experimental data.
T2  - Optical and Quantum Electronics
T1  - Laser irradiation of 10x(Ni/Ti)/Si multilayers at different wavelengths
VL  - 48
IS  - 6
DO  - 10.1007/s11082-016-0503-4
ER  - 
@article{
author = "Salatić, Branislav and Petrović, Suzana and Peruško, Davor and Čekada, Miha and Jelenković, Branislav and Pantelić, Dejan",
year = "2016",
abstract = "A study of the effects of laser irradiation on the morphology and composition of Ni/Ti multilayers induced by nanosecond laser pulses at different wavelengths is reported. Irradiation of complex 109(Ni/Ti)/Si sample was done by a Nd:YAG laser which operate at a 1064 nm wavelength, frequency doubled wavelength (532 nm) and dual-wavelength (1064 and 532 nm). The following surface morphological changes were observed: (1) ablation of the thin film during the first laser pulse and (2) appearance of some nanostructures (mosaic structure) in the irradiated region. After action of one pulse, the boundary of damage area was relatively sharp at low pulse energy, whereas it was diffuse after irradiation with higher energy per pulse. The results obtained show that laser irradiation induced mixing between Ni and Ti layers which creates conditions for the formation of intermetallic compounds. A numerical model was used to predict ablation depths and temperatures inside the material during the time. The model prediction shows a close agreement with experimental data.",
journal = "Optical and Quantum Electronics",
title = "Laser irradiation of 10x(Ni/Ti)/Si multilayers at different wavelengths",
volume = "48",
number = "6",
doi = "10.1007/s11082-016-0503-4"
}
Salatić, B., Petrović, S., Peruško, D., Čekada, M., Jelenković, B.,& Pantelić, D.. (2016). Laser irradiation of 10x(Ni/Ti)/Si multilayers at different wavelengths. in Optical and Quantum Electronics, 48(6).
https://doi.org/10.1007/s11082-016-0503-4
Salatić B, Petrović S, Peruško D, Čekada M, Jelenković B, Pantelić D. Laser irradiation of 10x(Ni/Ti)/Si multilayers at different wavelengths. in Optical and Quantum Electronics. 2016;48(6).
doi:10.1007/s11082-016-0503-4 .
Salatić, Branislav, Petrović, Suzana, Peruško, Davor, Čekada, Miha, Jelenković, Branislav, Pantelić, Dejan, "Laser irradiation of 10x(Ni/Ti)/Si multilayers at different wavelengths" in Optical and Quantum Electronics, 48, no. 6 (2016),
https://doi.org/10.1007/s11082-016-0503-4 . .
1
1
1

Fast fabrication of large area concave microlens arrays

Murić, Branka; Grujić, Dušan; Milovanović, Dubravka S.; Pantelić, Dejan; Vasiljević, Darko; Jelenković, Branislav

(Society of Physical Chemists of Serbia, 2014)

TY  - CONF
AU  - Murić, Branka
AU  - Grujić, Dušan
AU  - Milovanović, Dubravka S.
AU  - Pantelić, Dejan
AU  - Vasiljević, Darko
AU  - Jelenković, Branislav
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9209
AB  - A single-step process for rapid fabrication of large-area concave microlens
arrays using a diode-pumped solid state (DPSS) laser operating at 473 nm is
developed. Using tartrazine sensitized gelatin layer treated with tot’hema -
mixture of iron (II)-, manganese (II)- and copper(II)gluconate- (denoted
short as tSTG) and a direct laser writing device developed in our laboratory,
we could produce 10 000 uniform microlens arrays within 30 min. Uniform
microlenses with different diameters and depth can be produced by varying
the laser power, exposure time and dye concentration.
PB  - Society of Physical Chemists of Serbia
C3  - Physical chemistry 2014: 12th International Conference on Fundamental and Applied Aspects of Physical Chemistry
T1  - Fast fabrication of large area concave microlens arrays
VL  - H-30-P
UR  - https://hdl.handle.net/21.15107/rcub_vinar_9209
ER  - 
@conference{
author = "Murić, Branka and Grujić, Dušan and Milovanović, Dubravka S. and Pantelić, Dejan and Vasiljević, Darko and Jelenković, Branislav",
year = "2014",
abstract = "A single-step process for rapid fabrication of large-area concave microlens
arrays using a diode-pumped solid state (DPSS) laser operating at 473 nm is
developed. Using tartrazine sensitized gelatin layer treated with tot’hema -
mixture of iron (II)-, manganese (II)- and copper(II)gluconate- (denoted
short as tSTG) and a direct laser writing device developed in our laboratory,
we could produce 10 000 uniform microlens arrays within 30 min. Uniform
microlenses with different diameters and depth can be produced by varying
the laser power, exposure time and dye concentration.",
publisher = "Society of Physical Chemists of Serbia",
journal = "Physical chemistry 2014: 12th International Conference on Fundamental and Applied Aspects of Physical Chemistry",
title = "Fast fabrication of large area concave microlens arrays",
volume = "H-30-P",
url = "https://hdl.handle.net/21.15107/rcub_vinar_9209"
}
Murić, B., Grujić, D., Milovanović, D. S., Pantelić, D., Vasiljević, D.,& Jelenković, B.. (2014). Fast fabrication of large area concave microlens arrays. in Physical chemistry 2014: 12th International Conference on Fundamental and Applied Aspects of Physical Chemistry
Society of Physical Chemists of Serbia., H-30-P.
https://hdl.handle.net/21.15107/rcub_vinar_9209
Murić B, Grujić D, Milovanović DS, Pantelić D, Vasiljević D, Jelenković B. Fast fabrication of large area concave microlens arrays. in Physical chemistry 2014: 12th International Conference on Fundamental and Applied Aspects of Physical Chemistry. 2014;H-30-P.
https://hdl.handle.net/21.15107/rcub_vinar_9209 .
Murić, Branka, Grujić, Dušan, Milovanović, Dubravka S., Pantelić, Dejan, Vasiljević, Darko, Jelenković, Branislav, "Fast fabrication of large area concave microlens arrays" in Physical chemistry 2014: 12th International Conference on Fundamental and Applied Aspects of Physical Chemistry, H-30-P (2014),
https://hdl.handle.net/21.15107/rcub_vinar_9209 .

Biomechanical model produced from light-activated dental composite resins: a holographic analysis

Pantelić, Dejan; Vasiljević, Darko; Blažić, Larisa; Savić-Šević, Svetlana N.; Murić, Branka; Nikolić, Marko

(2013)

TY  - JOUR
AU  - Pantelić, Dejan
AU  - Vasiljević, Darko
AU  - Blažić, Larisa
AU  - Savić-Šević, Svetlana N.
AU  - Murić, Branka
AU  - Nikolić, Marko
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7018
AB  - Light-activated dental composites, commonly applied in dentistry, can be used as excellent material for producing biomechanical models. They can be cast in almost any shape in an appropriate silicone mold and quickly solidified by irradiation with light in the blue part of the spectrum. In that way, it is possible to obtain any number of nearly identical casts. The models can be used to study the behavior of arbitrary structure under mechanical loads. To test the technique, a simple mechanical model of the tooth with a mesio-occluso-distal cavity was manufactured. Composite resin restoration was placed inside the cavity and light cured. Real-time holographic interferometry was used to analyze the contraction of the composite resin and its effect on the surrounding material. The results obtained in the holographic experiment were in good agreement with those obtained using the finite element method.
T2  - Physica Scripta
T1  - Biomechanical model produced from light-activated dental composite resins: a holographic analysis
VL  - T157
DO  - 10.1088/0031-8949/2013/T157/014021
ER  - 
@article{
author = "Pantelić, Dejan and Vasiljević, Darko and Blažić, Larisa and Savić-Šević, Svetlana N. and Murić, Branka and Nikolić, Marko",
year = "2013",
abstract = "Light-activated dental composites, commonly applied in dentistry, can be used as excellent material for producing biomechanical models. They can be cast in almost any shape in an appropriate silicone mold and quickly solidified by irradiation with light in the blue part of the spectrum. In that way, it is possible to obtain any number of nearly identical casts. The models can be used to study the behavior of arbitrary structure under mechanical loads. To test the technique, a simple mechanical model of the tooth with a mesio-occluso-distal cavity was manufactured. Composite resin restoration was placed inside the cavity and light cured. Real-time holographic interferometry was used to analyze the contraction of the composite resin and its effect on the surrounding material. The results obtained in the holographic experiment were in good agreement with those obtained using the finite element method.",
journal = "Physica Scripta",
title = "Biomechanical model produced from light-activated dental composite resins: a holographic analysis",
volume = "T157",
doi = "10.1088/0031-8949/2013/T157/014021"
}
Pantelić, D., Vasiljević, D., Blažić, L., Savić-Šević, S. N., Murić, B.,& Nikolić, M.. (2013). Biomechanical model produced from light-activated dental composite resins: a holographic analysis. in Physica Scripta, T157.
https://doi.org/10.1088/0031-8949/2013/T157/014021
Pantelić D, Vasiljević D, Blažić L, Savić-Šević SN, Murić B, Nikolić M. Biomechanical model produced from light-activated dental composite resins: a holographic analysis. in Physica Scripta. 2013;T157.
doi:10.1088/0031-8949/2013/T157/014021 .
Pantelić, Dejan, Vasiljević, Darko, Blažić, Larisa, Savić-Šević, Svetlana N., Murić, Branka, Nikolić, Marko, "Biomechanical model produced from light-activated dental composite resins: a holographic analysis" in Physica Scripta, T157 (2013),
https://doi.org/10.1088/0031-8949/2013/T157/014021 . .
1