Swedish Research Council (2014-5993)

Link to this page

Swedish Research Council (2014-5993)

Authors

Publications

The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water

Lazarević-Pašti, Tamara; Anićijević, Vladan J.; Baljozović, Miloš; Vasić Anićijević, Dragana D.; Gutić, Sanjin J.; Vasić, Vesna M.; Skorodumova, Natalia V.; Pašti, Igor A.

(2018)

TY  - JOUR
AU  - Lazarević-Pašti, Tamara
AU  - Anićijević, Vladan J.
AU  - Baljozović, Miloš
AU  - Vasić Anićijević, Dragana D.
AU  - Gutić, Sanjin J.
AU  - Vasić, Vesna M.
AU  - Skorodumova, Natalia V.
AU  - Pašti, Igor A.
PY  - 2018
UR  - http://xlink.rsc.org/?DOI=C8EN00171E
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7730
AB  - The wide use of pesticides in modern agriculture and other areas results in an urgent need for their efficient removal from the environment. Adsorption of pesticides is one of the most commonly used strategies for this task. Here we analyze the adsorption of two organophosphorus pesticides, dimethoate (DMT) and chlorpyrifos (CPF), on graphene-based materials. The adsorption was found to be very sensitive to the structure of the adsorbents used. In particular, aliphatic DMT was found to prefer hydrophilic oxidized graphene surfaces. The CPF molecule, which contains an aromatic moiety, prefers adsorption on the surface of a graphene basal plane with high structural order and preserved π electron system. The toxicity of pesticide solutions is reduced after adsorption, suggesting that there is no oxidation of DMT and CPF to more toxic oxo forms. We emphasize that the combination of structural properties of adsorbents and adsorbates defines the adsorption of organophosphorus pesticides on graphene-based materials, while the specific surface area of adsorbents is not the major factor.
T2  - Environmental Science: Nano
T1  - The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water
VL  - 5
IS  - 6
SP  - 1482
EP  - 1494
DO  - 10.1039/C8EN00171E
ER  - 
@article{
author = "Lazarević-Pašti, Tamara and Anićijević, Vladan J. and Baljozović, Miloš and Vasić Anićijević, Dragana D. and Gutić, Sanjin J. and Vasić, Vesna M. and Skorodumova, Natalia V. and Pašti, Igor A.",
year = "2018",
abstract = "The wide use of pesticides in modern agriculture and other areas results in an urgent need for their efficient removal from the environment. Adsorption of pesticides is one of the most commonly used strategies for this task. Here we analyze the adsorption of two organophosphorus pesticides, dimethoate (DMT) and chlorpyrifos (CPF), on graphene-based materials. The adsorption was found to be very sensitive to the structure of the adsorbents used. In particular, aliphatic DMT was found to prefer hydrophilic oxidized graphene surfaces. The CPF molecule, which contains an aromatic moiety, prefers adsorption on the surface of a graphene basal plane with high structural order and preserved π electron system. The toxicity of pesticide solutions is reduced after adsorption, suggesting that there is no oxidation of DMT and CPF to more toxic oxo forms. We emphasize that the combination of structural properties of adsorbents and adsorbates defines the adsorption of organophosphorus pesticides on graphene-based materials, while the specific surface area of adsorbents is not the major factor.",
journal = "Environmental Science: Nano",
title = "The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water",
volume = "5",
number = "6",
pages = "1482-1494",
doi = "10.1039/C8EN00171E"
}
Lazarević-Pašti, T., Anićijević, V. J., Baljozović, M., Vasić Anićijević, D. D., Gutić, S. J., Vasić, V. M., Skorodumova, N. V.,& Pašti, I. A.. (2018). The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water. in Environmental Science: Nano, 5(6), 1482-1494.
https://doi.org/10.1039/C8EN00171E
Lazarević-Pašti T, Anićijević VJ, Baljozović M, Vasić Anićijević DD, Gutić SJ, Vasić VM, Skorodumova NV, Pašti IA. The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water. in Environmental Science: Nano. 2018;5(6):1482-1494.
doi:10.1039/C8EN00171E .
Lazarević-Pašti, Tamara, Anićijević, Vladan J., Baljozović, Miloš, Vasić Anićijević, Dragana D., Gutić, Sanjin J., Vasić, Vesna M., Skorodumova, Natalia V., Pašti, Igor A., "The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water" in Environmental Science: Nano, 5, no. 6 (2018):1482-1494,
https://doi.org/10.1039/C8EN00171E . .
7
64
31
66

A study of ordered mesoporous carbon doped with Co and Ni as a catalyst of oxygen reduction reaction in both alkaline and acidic media

Gavrilov, Nemanja M.; Momčilović, Milan Z.; Dobrota, Ana S.; Stanković, Dalibor M.; Jokić, Bojan M.; Babić, Biljana M.; Skorodumova, Natalia V.; Mentus, Slavko V.; Pašti, Igor A.

(2018)

TY  - JOUR
AU  - Gavrilov, Nemanja M.
AU  - Momčilović, Milan Z.
AU  - Dobrota, Ana S.
AU  - Stanković, Dalibor M.
AU  - Jokić, Bojan M.
AU  - Babić, Biljana M.
AU  - Skorodumova, Natalia V.
AU  - Mentus, Slavko V.
AU  - Pašti, Igor A.
PY  - 2018
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0257897218305838
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7727
AB  - The incorporation of trace amounts (<0.2%) of Co and Ni noticeably enhanced the catalytic activity of nitrogen-free ordered mesoporous carbon (OMC) towards oxygen reduction reaction (ORR). (Co,Ni)-doped OMCs were characterized by N2-adsorption measurements, X-ray powder diffraction, field emission scanning electron microscopy and Raman spectroscopy methods, and their ORR activity was estimated by voltammetry on rotating disk electrode in acidic and alkaline media. (Co,Ni)-doped OMCs show modest activities in acidic media, while the catalytic activity in alkaline media is rather high. The measured activities are compared to the Pt-based and Pt-free ORR catalysts reported in the literature. The number of electrons consumed per O2in metal-doped OMCs was found to vary between 2 and 4, which is advantageous in comparison to metal-free OMC. Also, the mass activities of metal-doped OMCs were found to be up to 2.5 times higher compared to that of metal-free OMC. We suggest that the ORR activity is governed by a balance between (i) textural properties, which determine the electrochemically accessible surface of the catalyst and which are influenced by the addition of a metal precursor, and (ii) novel active sites formed upon the introduction of metals into the carbon structure. In particular, our Density Functional Theory calculations suggest that Co and Ni atoms embedded into the single vacancies of graphene can activate the O2molecule and contribute to the decomposition of peroxide.
T2  - Surface and Coatings Technology
T1  - A study of ordered mesoporous carbon doped with Co and Ni as a catalyst of oxygen reduction reaction in both alkaline and acidic media
VL  - 349
SP  - 511
EP  - 521
DO  - 10.1016/j.surfcoat.2018.06.008
ER  - 
@article{
author = "Gavrilov, Nemanja M. and Momčilović, Milan Z. and Dobrota, Ana S. and Stanković, Dalibor M. and Jokić, Bojan M. and Babić, Biljana M. and Skorodumova, Natalia V. and Mentus, Slavko V. and Pašti, Igor A.",
year = "2018",
abstract = "The incorporation of trace amounts (<0.2%) of Co and Ni noticeably enhanced the catalytic activity of nitrogen-free ordered mesoporous carbon (OMC) towards oxygen reduction reaction (ORR). (Co,Ni)-doped OMCs were characterized by N2-adsorption measurements, X-ray powder diffraction, field emission scanning electron microscopy and Raman spectroscopy methods, and their ORR activity was estimated by voltammetry on rotating disk electrode in acidic and alkaline media. (Co,Ni)-doped OMCs show modest activities in acidic media, while the catalytic activity in alkaline media is rather high. The measured activities are compared to the Pt-based and Pt-free ORR catalysts reported in the literature. The number of electrons consumed per O2in metal-doped OMCs was found to vary between 2 and 4, which is advantageous in comparison to metal-free OMC. Also, the mass activities of metal-doped OMCs were found to be up to 2.5 times higher compared to that of metal-free OMC. We suggest that the ORR activity is governed by a balance between (i) textural properties, which determine the electrochemically accessible surface of the catalyst and which are influenced by the addition of a metal precursor, and (ii) novel active sites formed upon the introduction of metals into the carbon structure. In particular, our Density Functional Theory calculations suggest that Co and Ni atoms embedded into the single vacancies of graphene can activate the O2molecule and contribute to the decomposition of peroxide.",
journal = "Surface and Coatings Technology",
title = "A study of ordered mesoporous carbon doped with Co and Ni as a catalyst of oxygen reduction reaction in both alkaline and acidic media",
volume = "349",
pages = "511-521",
doi = "10.1016/j.surfcoat.2018.06.008"
}
Gavrilov, N. M., Momčilović, M. Z., Dobrota, A. S., Stanković, D. M., Jokić, B. M., Babić, B. M., Skorodumova, N. V., Mentus, S. V.,& Pašti, I. A.. (2018). A study of ordered mesoporous carbon doped with Co and Ni as a catalyst of oxygen reduction reaction in both alkaline and acidic media. in Surface and Coatings Technology, 349, 511-521.
https://doi.org/10.1016/j.surfcoat.2018.06.008
Gavrilov NM, Momčilović MZ, Dobrota AS, Stanković DM, Jokić BM, Babić BM, Skorodumova NV, Mentus SV, Pašti IA. A study of ordered mesoporous carbon doped with Co and Ni as a catalyst of oxygen reduction reaction in both alkaline and acidic media. in Surface and Coatings Technology. 2018;349:511-521.
doi:10.1016/j.surfcoat.2018.06.008 .
Gavrilov, Nemanja M., Momčilović, Milan Z., Dobrota, Ana S., Stanković, Dalibor M., Jokić, Bojan M., Babić, Biljana M., Skorodumova, Natalia V., Mentus, Slavko V., Pašti, Igor A., "A study of ordered mesoporous carbon doped with Co and Ni as a catalyst of oxygen reduction reaction in both alkaline and acidic media" in Surface and Coatings Technology, 349 (2018):511-521,
https://doi.org/10.1016/j.surfcoat.2018.06.008 . .
23
16
24