Reinforcement of the Faculty of Chemistry, University of Belgrade, towards becoming a Center of Excellence in the region of WB for Molecular Biotechnology and Food research

Link to this page

info:eu-repo/grantAgreement/EC/FP7/256716/EU//

Reinforcement of the Faculty of Chemistry, University of Belgrade, towards becoming a Center of Excellence in the region of WB for Molecular Biotechnology and Food research (en)
Authors

Publications

Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation

Baroud, Afya A.; Mihajlović-Lalić, Ljiljana E.; Gligorijević, Nevenka N.; Aranđelović, Sandra; Stanković, Dalibor M.; Radulović, Siniša S.; Van Hecke, Kristof; Savić, Aleksandar; Grgurić-Šipka, Sanja

(2017)

TY  - JOUR
AU  - Baroud, Afya A.
AU  - Mihajlović-Lalić, Ljiljana E.
AU  - Gligorijević, Nevenka N.
AU  - Aranđelović, Sandra
AU  - Stanković, Dalibor M.
AU  - Radulović, Siniša S.
AU  - Van Hecke, Kristof
AU  - Savić, Aleksandar
AU  - Grgurić-Šipka, Sanja
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1438
AB  - Complexes 1-4, [Ru(L)(bpy)(2)]PF6, where bpy=2,2-bipyridine; HL=3-methylpyridine-2-carboxylic acid (HL1), 6-methylpyridine-2-carboxylic acid (HL2), 5-bromopyridine-2-carboxylic acid (HL3) and 6-bromopyridine-2-carboxylic acid (HL4), were synthesized and characterized. The electrochemical character of the complexes was investigated by cyclic voltammetry revealing two reversible reduction waves in the negative range of potentials, most likely due to a reduction of the bipyridine moiety. Cytotoxicity studies by MTT assay for 72h of drug action revealed that 2-4 exhibited moderate activity in cervical human tumor cells (HeLa). Complex 2 exhibited low activity in colon cancer LS-174 cells (180 +/- 10), while all complexes were devoid of activity in lung cancer A549 and non-tumor MRC-5 cells, up to 200M. Combinational studies of the most active complex 2, with pharmacological modulators of cell redox status, L-buthionine-sulfoximine (L-BSO) or N-acetyl-L-cysteine (NAC), showed that when L-BSO potentiated, 2 induced a sub-G1 peak of the cell cycle in the HeLa cell line. UV-vis and cyclic voltammetry were performed in order to investigate the binding mode of 2 to DNA and suggested intercalation for the complex-DNA interaction. [GRAPHICS]
T2  - Journal of Coordination Chemistry
T1  - Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation
VL  - 70
IS  - 5
SP  - 831
EP  - 847
DO  - 10.1080/00958972.2017.1282611
ER  - 
@article{
author = "Baroud, Afya A. and Mihajlović-Lalić, Ljiljana E. and Gligorijević, Nevenka N. and Aranđelović, Sandra and Stanković, Dalibor M. and Radulović, Siniša S. and Van Hecke, Kristof and Savić, Aleksandar and Grgurić-Šipka, Sanja",
year = "2017",
abstract = "Complexes 1-4, [Ru(L)(bpy)(2)]PF6, where bpy=2,2-bipyridine; HL=3-methylpyridine-2-carboxylic acid (HL1), 6-methylpyridine-2-carboxylic acid (HL2), 5-bromopyridine-2-carboxylic acid (HL3) and 6-bromopyridine-2-carboxylic acid (HL4), were synthesized and characterized. The electrochemical character of the complexes was investigated by cyclic voltammetry revealing two reversible reduction waves in the negative range of potentials, most likely due to a reduction of the bipyridine moiety. Cytotoxicity studies by MTT assay for 72h of drug action revealed that 2-4 exhibited moderate activity in cervical human tumor cells (HeLa). Complex 2 exhibited low activity in colon cancer LS-174 cells (180 +/- 10), while all complexes were devoid of activity in lung cancer A549 and non-tumor MRC-5 cells, up to 200M. Combinational studies of the most active complex 2, with pharmacological modulators of cell redox status, L-buthionine-sulfoximine (L-BSO) or N-acetyl-L-cysteine (NAC), showed that when L-BSO potentiated, 2 induced a sub-G1 peak of the cell cycle in the HeLa cell line. UV-vis and cyclic voltammetry were performed in order to investigate the binding mode of 2 to DNA and suggested intercalation for the complex-DNA interaction. [GRAPHICS]",
journal = "Journal of Coordination Chemistry",
title = "Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation",
volume = "70",
number = "5",
pages = "831-847",
doi = "10.1080/00958972.2017.1282611"
}
Baroud, A. A., Mihajlović-Lalić, L. E., Gligorijević, N. N., Aranđelović, S., Stanković, D. M., Radulović, S. S., Van Hecke, K., Savić, A.,& Grgurić-Šipka, S.. (2017). Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation. in Journal of Coordination Chemistry, 70(5), 831-847.
https://doi.org/10.1080/00958972.2017.1282611
Baroud AA, Mihajlović-Lalić LE, Gligorijević NN, Aranđelović S, Stanković DM, Radulović SS, Van Hecke K, Savić A, Grgurić-Šipka S. Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation. in Journal of Coordination Chemistry. 2017;70(5):831-847.
doi:10.1080/00958972.2017.1282611 .
Baroud, Afya A., Mihajlović-Lalić, Ljiljana E., Gligorijević, Nevenka N., Aranđelović, Sandra, Stanković, Dalibor M., Radulović, Siniša S., Van Hecke, Kristof, Savić, Aleksandar, Grgurić-Šipka, Sanja, "Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation" in Journal of Coordination Chemistry, 70, no. 5 (2017):831-847,
https://doi.org/10.1080/00958972.2017.1282611 . .
19
12
18

Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation

Baroud, Afya A.; Mihajlović-Lalić, Ljiljana E.; Gligorijević, Nevenka N.; Aranđelović, Sandra; Stanković, Dalibor M.; Radulović, Siniša S.; Van Hecke, Kristof; Savić, Aleksandar; Grgurić-Šipka, Sanja

(2017)

TY  - JOUR
AU  - Baroud, Afya A.
AU  - Mihajlović-Lalić, Ljiljana E.
AU  - Gligorijević, Nevenka N.
AU  - Aranđelović, Sandra
AU  - Stanković, Dalibor M.
AU  - Radulović, Siniša S.
AU  - Van Hecke, Kristof
AU  - Savić, Aleksandar
AU  - Grgurić-Šipka, Sanja
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8852
AB  - Complexes 1-4, [Ru(L)(bpy)(2)]PF6, where bpy=2,2-bipyridine; HL=3-methylpyridine-2-carboxylic acid (HL1), 6-methylpyridine-2-carboxylic acid (HL2), 5-bromopyridine-2-carboxylic acid (HL3) and 6-bromopyridine-2-carboxylic acid (HL4), were synthesized and characterized. The electrochemical character of the complexes was investigated by cyclic voltammetry revealing two reversible reduction waves in the negative range of potentials, most likely due to a reduction of the bipyridine moiety. Cytotoxicity studies by MTT assay for 72h of drug action revealed that 2-4 exhibited moderate activity in cervical human tumor cells (HeLa). Complex 2 exhibited low activity in colon cancer LS-174 cells (180 +/- 10), while all complexes were devoid of activity in lung cancer A549 and non-tumor MRC-5 cells, up to 200M. Combinational studies of the most active complex 2, with pharmacological modulators of cell redox status, L-buthionine-sulfoximine (L-BSO) or N-acetyl-L-cysteine (NAC), showed that when L-BSO potentiated, 2 induced a sub-G1 peak of the cell cycle in the HeLa cell line. UV-vis and cyclic voltammetry were performed in order to investigate the binding mode of 2 to DNA and suggested intercalation for the complex-DNA interaction. [GRAPHICS]
T2  - Journal of Coordination Chemistry
T1  - Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation
VL  - 70
IS  - 5
SP  - 831
EP  - 847
DO  - 10.1080/00958972.2017.1282611
ER  - 
@article{
author = "Baroud, Afya A. and Mihajlović-Lalić, Ljiljana E. and Gligorijević, Nevenka N. and Aranđelović, Sandra and Stanković, Dalibor M. and Radulović, Siniša S. and Van Hecke, Kristof and Savić, Aleksandar and Grgurić-Šipka, Sanja",
year = "2017",
abstract = "Complexes 1-4, [Ru(L)(bpy)(2)]PF6, where bpy=2,2-bipyridine; HL=3-methylpyridine-2-carboxylic acid (HL1), 6-methylpyridine-2-carboxylic acid (HL2), 5-bromopyridine-2-carboxylic acid (HL3) and 6-bromopyridine-2-carboxylic acid (HL4), were synthesized and characterized. The electrochemical character of the complexes was investigated by cyclic voltammetry revealing two reversible reduction waves in the negative range of potentials, most likely due to a reduction of the bipyridine moiety. Cytotoxicity studies by MTT assay for 72h of drug action revealed that 2-4 exhibited moderate activity in cervical human tumor cells (HeLa). Complex 2 exhibited low activity in colon cancer LS-174 cells (180 +/- 10), while all complexes were devoid of activity in lung cancer A549 and non-tumor MRC-5 cells, up to 200M. Combinational studies of the most active complex 2, with pharmacological modulators of cell redox status, L-buthionine-sulfoximine (L-BSO) or N-acetyl-L-cysteine (NAC), showed that when L-BSO potentiated, 2 induced a sub-G1 peak of the cell cycle in the HeLa cell line. UV-vis and cyclic voltammetry were performed in order to investigate the binding mode of 2 to DNA and suggested intercalation for the complex-DNA interaction. [GRAPHICS]",
journal = "Journal of Coordination Chemistry",
title = "Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation",
volume = "70",
number = "5",
pages = "831-847",
doi = "10.1080/00958972.2017.1282611"
}
Baroud, A. A., Mihajlović-Lalić, L. E., Gligorijević, N. N., Aranđelović, S., Stanković, D. M., Radulović, S. S., Van Hecke, K., Savić, A.,& Grgurić-Šipka, S.. (2017). Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation. in Journal of Coordination Chemistry, 70(5), 831-847.
https://doi.org/10.1080/00958972.2017.1282611
Baroud AA, Mihajlović-Lalić LE, Gligorijević NN, Aranđelović S, Stanković DM, Radulović SS, Van Hecke K, Savić A, Grgurić-Šipka S. Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation. in Journal of Coordination Chemistry. 2017;70(5):831-847.
doi:10.1080/00958972.2017.1282611 .
Baroud, Afya A., Mihajlović-Lalić, Ljiljana E., Gligorijević, Nevenka N., Aranđelović, Sandra, Stanković, Dalibor M., Radulović, Siniša S., Van Hecke, Kristof, Savić, Aleksandar, Grgurić-Šipka, Sanja, "Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation" in Journal of Coordination Chemistry, 70, no. 5 (2017):831-847,
https://doi.org/10.1080/00958972.2017.1282611 . .
19
12
18

Interactions of cytotoxic amino acid derivatives of tert-butylquinone with DNA and lysozyme

Vilipić, Jovana P.; Novaković, Irena T.; Zlatović, Mario V.; Vujčić, Miroslava T.; Tufegdzic, Srđan J.; Sladić, Dušan M.

(2016)

TY  - JOUR
AU  - Vilipić, Jovana P.
AU  - Novaković, Irena T.
AU  - Zlatović, Mario V.
AU  - Vujčić, Miroslava T.
AU  - Tufegdzic, Srđan J.
AU  - Sladić, Dušan M.
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1405
AB  - The interactions of nine amino acid derivatives of tert-butylquinone with biomacromolecules were studied. Sodium dodecyl sulphate (SDS) gel electrophoresis and mass spectrometry confirmed the absence of modifications of lysozyme by any of the synthesized compounds. Spectrophotometric studies demonstrated hyperchromism, i.e., the existence of interactions between the quinones and calf thymus DNA (CT-DNA). Determination of the binding constants by absorption titration indicated weak interactions between the quinone derivatives and CT-DNA. The quenching of fluorescence of the intercalator ethidium bromide (EB) from the EB-CT-DNA system and of the minor groove binder Hoechst 33258 (H) from the H-CT-DNA system by the synthesized derivatives indicated interactions of the compounds and CT-DNA. Circular dichroism (CD) spectra demonstrated a non-intercalative binding mode of the quinone derivatives to CT-DNA. Molecular docking results confirmed binding to the minor groove. The electrophoretic pattern showed no cleavage of the pUC19 plasmid in the presence of any of the synthesized compounds. The ability of the derivatives to scavenge radicals was confirmed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test. All the presented results suggest that the DNA minor groove binding is the principal mechanism of action of the examined amino acid derivatives.
T2  - Journal of the Serbian Chemical Society
T1  - Interactions of cytotoxic amino acid derivatives of tert-butylquinone with DNA and lysozyme
VL  - 81
IS  - 12
SP  - 1345
EP  - 1358
DO  - 10.2298/JSC160725101V
ER  - 
@article{
author = "Vilipić, Jovana P. and Novaković, Irena T. and Zlatović, Mario V. and Vujčić, Miroslava T. and Tufegdzic, Srđan J. and Sladić, Dušan M.",
year = "2016",
abstract = "The interactions of nine amino acid derivatives of tert-butylquinone with biomacromolecules were studied. Sodium dodecyl sulphate (SDS) gel electrophoresis and mass spectrometry confirmed the absence of modifications of lysozyme by any of the synthesized compounds. Spectrophotometric studies demonstrated hyperchromism, i.e., the existence of interactions between the quinones and calf thymus DNA (CT-DNA). Determination of the binding constants by absorption titration indicated weak interactions between the quinone derivatives and CT-DNA. The quenching of fluorescence of the intercalator ethidium bromide (EB) from the EB-CT-DNA system and of the minor groove binder Hoechst 33258 (H) from the H-CT-DNA system by the synthesized derivatives indicated interactions of the compounds and CT-DNA. Circular dichroism (CD) spectra demonstrated a non-intercalative binding mode of the quinone derivatives to CT-DNA. Molecular docking results confirmed binding to the minor groove. The electrophoretic pattern showed no cleavage of the pUC19 plasmid in the presence of any of the synthesized compounds. The ability of the derivatives to scavenge radicals was confirmed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test. All the presented results suggest that the DNA minor groove binding is the principal mechanism of action of the examined amino acid derivatives.",
journal = "Journal of the Serbian Chemical Society",
title = "Interactions of cytotoxic amino acid derivatives of tert-butylquinone with DNA and lysozyme",
volume = "81",
number = "12",
pages = "1345-1358",
doi = "10.2298/JSC160725101V"
}
Vilipić, J. P., Novaković, I. T., Zlatović, M. V., Vujčić, M. T., Tufegdzic, S. J.,& Sladić, D. M.. (2016). Interactions of cytotoxic amino acid derivatives of tert-butylquinone with DNA and lysozyme. in Journal of the Serbian Chemical Society, 81(12), 1345-1358.
https://doi.org/10.2298/JSC160725101V
Vilipić JP, Novaković IT, Zlatović MV, Vujčić MT, Tufegdzic SJ, Sladić DM. Interactions of cytotoxic amino acid derivatives of tert-butylquinone with DNA and lysozyme. in Journal of the Serbian Chemical Society. 2016;81(12):1345-1358.
doi:10.2298/JSC160725101V .
Vilipić, Jovana P., Novaković, Irena T., Zlatović, Mario V., Vujčić, Miroslava T., Tufegdzic, Srđan J., Sladić, Dušan M., "Interactions of cytotoxic amino acid derivatives of tert-butylquinone with DNA and lysozyme" in Journal of the Serbian Chemical Society, 81, no. 12 (2016):1345-1358,
https://doi.org/10.2298/JSC160725101V . .
1
1
1