France-Serbia bilateral project [CNRS PICS 8070]

Link to this page

France-Serbia bilateral project [CNRS PICS 8070]

Authors

Publications

DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time

Keta, Otilija D.; Petković, Vladana; Cirrone, Pablo; Petringa, Giada; Cuttone, Giacomo; Sakata, Dousatsu; Shin, Wook-Geun; Incerti, Sebastien; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(2021)

TY  - JOUR
AU  - Keta, Otilija D.
AU  - Petković, Vladana
AU  - Cirrone, Pablo
AU  - Petringa, Giada
AU  - Cuttone, Giacomo
AU  - Sakata, Dousatsu
AU  - Shin, Wook-Geun
AU  - Incerti, Sebastien
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9875
AB  - Purpose The complex relationship between linear energy transfer (LET) and cellular response to radiation is not yet fully elucidated. To better characterize DNA damage after irradiations with therapeutic protons, we monitored formation and disappearance of DNA double-strand breaks (DNA DSB) as a function of LET and time. Comparisons with conventional γ-rays and high LET carbon ions were also performed.Materials and Methods In the present work, we performed immunofluorescence-based assay to determine the amount of DNA DSB induced by different LET values along the 62 MeV therapeutic proton Spread out Bragg peak (SOBP) in three cancer cell lines, i.e. HTB140 melanoma, MCF-7 breast adenocarcinoma and HTB177 non-small lung cancer cells. Time dependence of foci formation was followed as well. To determine irradiation positions, corresponding to the desired LET values, numerical simulations were carried out using Geant4 toolkit. We compared γ-H2AX foci persistence after irradiations with protons to that of γ-rays and carbon ions.Results With the rise of LET values along the therapeutic proton SOBP, the increase of γ-H2AX foci number is detected in the three cell lines up to the distal end of the SOBP, while there is a decrease on its distal fall-off part. With the prolonged incubation time, the number of foci gradually drops tending to attain the residual level. For the maximum number of DNA DSB, irradiation with protons attain higher level than that of γ-rays. Carbon ions produce more DNA DSB than protons but not substantially. The number of residual foci produced by γ-rays is significantly lower than that of protons and particularly carbon ions. Carbon ions do not produce considerably higher number of foci than protons, as it could be expected due to their physical properties.Conclusions In situ visualization of γ-H2AX foci reveal creation of more lesions in the three cell lines by clinically relevant proton SOBP than γ-rays. The lack of significant differences in the number of γ-H2AX foci between the proton and carbon ion-irradiated samples suggests an increased complexity of DNA lesions and slower repair kinetics after carbon ions compared to protons. For all three irradiation types, there is no major difference between the three cell lines shortly after irradiations, while later on, the formation of residual foci starts to express the inherent nature of tested cells, therefore increasing discrepancy between them.
T2  - International Journal of Radiation Biology
T1  - DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time
VL  - 97
IS  - 9
SP  - 1229
EP  - 1240
DO  - 10.1080/09553002.2021.1948140
ER  - 
@article{
author = "Keta, Otilija D. and Petković, Vladana and Cirrone, Pablo and Petringa, Giada and Cuttone, Giacomo and Sakata, Dousatsu and Shin, Wook-Geun and Incerti, Sebastien and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2021",
abstract = "Purpose The complex relationship between linear energy transfer (LET) and cellular response to radiation is not yet fully elucidated. To better characterize DNA damage after irradiations with therapeutic protons, we monitored formation and disappearance of DNA double-strand breaks (DNA DSB) as a function of LET and time. Comparisons with conventional γ-rays and high LET carbon ions were also performed.Materials and Methods In the present work, we performed immunofluorescence-based assay to determine the amount of DNA DSB induced by different LET values along the 62 MeV therapeutic proton Spread out Bragg peak (SOBP) in three cancer cell lines, i.e. HTB140 melanoma, MCF-7 breast adenocarcinoma and HTB177 non-small lung cancer cells. Time dependence of foci formation was followed as well. To determine irradiation positions, corresponding to the desired LET values, numerical simulations were carried out using Geant4 toolkit. We compared γ-H2AX foci persistence after irradiations with protons to that of γ-rays and carbon ions.Results With the rise of LET values along the therapeutic proton SOBP, the increase of γ-H2AX foci number is detected in the three cell lines up to the distal end of the SOBP, while there is a decrease on its distal fall-off part. With the prolonged incubation time, the number of foci gradually drops tending to attain the residual level. For the maximum number of DNA DSB, irradiation with protons attain higher level than that of γ-rays. Carbon ions produce more DNA DSB than protons but not substantially. The number of residual foci produced by γ-rays is significantly lower than that of protons and particularly carbon ions. Carbon ions do not produce considerably higher number of foci than protons, as it could be expected due to their physical properties.Conclusions In situ visualization of γ-H2AX foci reveal creation of more lesions in the three cell lines by clinically relevant proton SOBP than γ-rays. The lack of significant differences in the number of γ-H2AX foci between the proton and carbon ion-irradiated samples suggests an increased complexity of DNA lesions and slower repair kinetics after carbon ions compared to protons. For all three irradiation types, there is no major difference between the three cell lines shortly after irradiations, while later on, the formation of residual foci starts to express the inherent nature of tested cells, therefore increasing discrepancy between them.",
journal = "International Journal of Radiation Biology",
title = "DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time",
volume = "97",
number = "9",
pages = "1229-1240",
doi = "10.1080/09553002.2021.1948140"
}
Keta, O. D., Petković, V., Cirrone, P., Petringa, G., Cuttone, G., Sakata, D., Shin, W., Incerti, S., Petrović, I. M.,& Ristić-Fira, A.. (2021). DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time. in International Journal of Radiation Biology, 97(9), 1229-1240.
https://doi.org/10.1080/09553002.2021.1948140
Keta OD, Petković V, Cirrone P, Petringa G, Cuttone G, Sakata D, Shin W, Incerti S, Petrović IM, Ristić-Fira A. DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time. in International Journal of Radiation Biology. 2021;97(9):1229-1240.
doi:10.1080/09553002.2021.1948140 .
Keta, Otilija D., Petković, Vladana, Cirrone, Pablo, Petringa, Giada, Cuttone, Giacomo, Sakata, Dousatsu, Shin, Wook-Geun, Incerti, Sebastien, Petrović, Ivan M., Ristić-Fira, Aleksandra, "DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time" in International Journal of Radiation Biology, 97, no. 9 (2021):1229-1240,
https://doi.org/10.1080/09553002.2021.1948140 . .
4
10
1
8