WIDESPREAD-2018-3-TWINNING

Link to this page

WIDESPREAD-2018-3-TWINNING

Authors

Publications

Recharging process of commercial floating-gate MOS transistor in dosimetry application

Ilić, Stefan; Anđelković, Marko S.; Duane, Russell; Palma, Alberto J.; Sarajlić, Milija; Stanković, Srboljub; Ristić, Goran S.

(2021)

TY  - JOUR
AU  - Ilić, Stefan
AU  - Anđelković, Marko S.
AU  - Duane, Russell
AU  - Palma, Alberto J.
AU  - Sarajlić, Milija
AU  - Stanković, Srboljub
AU  - Ristić, Goran S.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10081
AB  - We investigated the recharging process of commercial floating gate device (EPAD) during the six different dose rates and ten irradiation cycles with the highest dose rate. Dose rate dependence of the floating gate dosimeter was observed from 1 Gy/h to 26 Gy/h (H2O). There is no change of the dosimetric characteristic with a constant dose rate of 26 Gy/h for ten cycles. The absorbed dose does not affect the drift of the threshold voltage readings after the irradiation steps. The reprogramming characteristic is not degrading with the absorbed dose for the ten irradiation cycles, giving the promising potential in the application for dosimetric purposes.
T2  - Microelectronics Reliability
T1  - Recharging process of commercial floating-gate MOS transistor in dosimetry application
VL  - 126
SP  - 114322
DO  - 10.1016/j.microrel.2021.114322
ER  - 
@article{
author = "Ilić, Stefan and Anđelković, Marko S. and Duane, Russell and Palma, Alberto J. and Sarajlić, Milija and Stanković, Srboljub and Ristić, Goran S.",
year = "2021",
abstract = "We investigated the recharging process of commercial floating gate device (EPAD) during the six different dose rates and ten irradiation cycles with the highest dose rate. Dose rate dependence of the floating gate dosimeter was observed from 1 Gy/h to 26 Gy/h (H2O). There is no change of the dosimetric characteristic with a constant dose rate of 26 Gy/h for ten cycles. The absorbed dose does not affect the drift of the threshold voltage readings after the irradiation steps. The reprogramming characteristic is not degrading with the absorbed dose for the ten irradiation cycles, giving the promising potential in the application for dosimetric purposes.",
journal = "Microelectronics Reliability",
title = "Recharging process of commercial floating-gate MOS transistor in dosimetry application",
volume = "126",
pages = "114322",
doi = "10.1016/j.microrel.2021.114322"
}
Ilić, S., Anđelković, M. S., Duane, R., Palma, A. J., Sarajlić, M., Stanković, S.,& Ristić, G. S.. (2021). Recharging process of commercial floating-gate MOS transistor in dosimetry application. in Microelectronics Reliability, 126, 114322.
https://doi.org/10.1016/j.microrel.2021.114322
Ilić S, Anđelković MS, Duane R, Palma AJ, Sarajlić M, Stanković S, Ristić GS. Recharging process of commercial floating-gate MOS transistor in dosimetry application. in Microelectronics Reliability. 2021;126:114322.
doi:10.1016/j.microrel.2021.114322 .
Ilić, Stefan, Anđelković, Marko S., Duane, Russell, Palma, Alberto J., Sarajlić, Milija, Stanković, Srboljub, Ristić, Goran S., "Recharging process of commercial floating-gate MOS transistor in dosimetry application" in Microelectronics Reliability, 126 (2021):114322,
https://doi.org/10.1016/j.microrel.2021.114322 . .
3
2