FCT, Portugal - [contract no. ISTID/156-2018]

Link to this page

FCT, Portugal - [contract no. ISTID/156-2018]

Authors

Publications

In-situ grafting of Fe and Cu nanoparticles on carbon for electrolytic hydrogen production

Georgijević, Jelena M.; Milikić, Jadranka; Zdolšek, Nikola; Brković, Snežana; Perović, Ivana; Laušević, Petar; Šljukić, Biljana

(Belgrade : Serbian Chemical Society, 2023)

TY  - CONF
AU  - Georgijević, Jelena M.
AU  - Milikić, Jadranka
AU  - Zdolšek, Nikola
AU  - Brković, Snežana
AU  - Perović, Ivana
AU  - Laušević, Petar
AU  - Šljukić, Biljana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12771
AB  - In order to reduce air pollution by green-house gases released during fossil fuels combustion, hydrogen has been suggested as an alternative, clean fuel [1]. The most promising method of obtaining green hydrogen (and oxygen) is electrolytic water splitting [2]. For splitting process to be efficient, it is necessary to useelectrocatalysts with high activity, but they should also be economically accessible. Ionic liquids are used in the most diverse fields of sciencedue to their unique physical and chemical properties, and in this regard, they can be used for the development of electrocatalystsby direct carbonization [3].  Within this study, carbon catalysts doped with iron and copper (Fe/C, Cu/C and FeCu/C) were prepared by carbonization of ionic liquids containing the corresponding metal and characterized for the hydrogen evolution reaction (HER) in alkaline (8 M KOH) media. Electrochemical measurements were made by cyclic voltammetry (CV), linear cyclic voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA). All electrocatalysts showed good activity for HER. Tafel slope (b) values of -132, 155 and -151 mV dec-1 (Table 1) were obtained for HER at 25 oC for Fe/C, Cu/C and FeCu/C, respectively. Also, the exchange current density (j0) was determined and the values ranged from 1.28 to 2.94 10-2 mAcm-2. The results (Table 1) show that Fe/C, Cu/C and FeCu/Care promisingelectrocatalysts for hydrogen gas production by water splitting.
PB  - Belgrade : Serbian Chemical Society
C3  - 9th Symposium Chemistry and Environmental Protection : Book of Abstracts
T1  - In-situ grafting of Fe and Cu nanoparticles on carbon for electrolytic hydrogen production
SP  - 141
EP  - 142
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12771
ER  - 
@conference{
author = "Georgijević, Jelena M. and Milikić, Jadranka and Zdolšek, Nikola and Brković, Snežana and Perović, Ivana and Laušević, Petar and Šljukić, Biljana",
year = "2023",
abstract = "In order to reduce air pollution by green-house gases released during fossil fuels combustion, hydrogen has been suggested as an alternative, clean fuel [1]. The most promising method of obtaining green hydrogen (and oxygen) is electrolytic water splitting [2]. For splitting process to be efficient, it is necessary to useelectrocatalysts with high activity, but they should also be economically accessible. Ionic liquids are used in the most diverse fields of sciencedue to their unique physical and chemical properties, and in this regard, they can be used for the development of electrocatalystsby direct carbonization [3].  Within this study, carbon catalysts doped with iron and copper (Fe/C, Cu/C and FeCu/C) were prepared by carbonization of ionic liquids containing the corresponding metal and characterized for the hydrogen evolution reaction (HER) in alkaline (8 M KOH) media. Electrochemical measurements were made by cyclic voltammetry (CV), linear cyclic voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA). All electrocatalysts showed good activity for HER. Tafel slope (b) values of -132, 155 and -151 mV dec-1 (Table 1) were obtained for HER at 25 oC for Fe/C, Cu/C and FeCu/C, respectively. Also, the exchange current density (j0) was determined and the values ranged from 1.28 to 2.94 10-2 mAcm-2. The results (Table 1) show that Fe/C, Cu/C and FeCu/Care promisingelectrocatalysts for hydrogen gas production by water splitting.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "9th Symposium Chemistry and Environmental Protection : Book of Abstracts",
title = "In-situ grafting of Fe and Cu nanoparticles on carbon for electrolytic hydrogen production",
pages = "141-142",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12771"
}
Georgijević, J. M., Milikić, J., Zdolšek, N., Brković, S., Perović, I., Laušević, P.,& Šljukić, B.. (2023). In-situ grafting of Fe and Cu nanoparticles on carbon for electrolytic hydrogen production. in 9th Symposium Chemistry and Environmental Protection : Book of Abstracts
Belgrade : Serbian Chemical Society., 141-142.
https://hdl.handle.net/21.15107/rcub_vinar_12771
Georgijević JM, Milikić J, Zdolšek N, Brković S, Perović I, Laušević P, Šljukić B. In-situ grafting of Fe and Cu nanoparticles on carbon for electrolytic hydrogen production. in 9th Symposium Chemistry and Environmental Protection : Book of Abstracts. 2023;:141-142.
https://hdl.handle.net/21.15107/rcub_vinar_12771 .
Georgijević, Jelena M., Milikić, Jadranka, Zdolšek, Nikola, Brković, Snežana, Perović, Ivana, Laušević, Petar, Šljukić, Biljana, "In-situ grafting of Fe and Cu nanoparticles on carbon for electrolytic hydrogen production" in 9th Symposium Chemistry and Environmental Protection : Book of Abstracts (2023):141-142,
https://hdl.handle.net/21.15107/rcub_vinar_12771 .