Serbia-Slovenia bilateral project [451-03-38/2016-09/50]

Link to this page

Serbia-Slovenia bilateral project [451-03-38/2016-09/50]

Authors

Publications

Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite

Jovanović, Zoran M.; Mravik, Željko; Bajuk-Bogdanović, Danica V.; Jovanović, Sonja; Marković, Smilja; Vujković, Milica; Kovač, Janez; Vengust, Damjan; Uskoković-Marković, Snežana; Holclajtner-Antunović, Ivanka D.

(2020)

TY  - JOUR
AU  - Jovanović, Zoran M.
AU  - Mravik, Željko
AU  - Bajuk-Bogdanović, Danica V.
AU  - Jovanović, Sonja
AU  - Marković, Smilja
AU  - Vujković, Milica
AU  - Kovač, Janez
AU  - Vengust, Damjan
AU  - Uskoković-Marković, Snežana
AU  - Holclajtner-Antunović, Ivanka D.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8520
AB  - In the present study we investigated the interaction between 12-tungstophosphoric acid (WPA) and graphene oxide (GO) in their nanocomposite by utilizing the loading of WPA as an intrinsic parameter for interaction tuning. The Fourier-transform infrared spectroscopy, temperature-programmed desorption, X-ray photoelectron spectroscopy, zeta-potential measurements, thermogravimetric analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy methods revealed that ∼5–13 wt% of WPA represents critical loading that separates two distinct contributions to GO-WPA interaction. This was explained by the self-limiting nature of GO-WPA interaction, initially controlled by high dispersion of WPA on GO (up to 13 wt%), that is eventually overpowered by WPA-WPA interaction as loading increases. As a result, the WPA agglomerates are being formed because of which the hybrid character of the nanocomposite diminishes, i.e., the properties of independent components start to be manifested to greater extent. The obtained results provide an important framework for considering possible outcomes in other 2D-0D systems, whose interaction is relevant both from fundamental and applicative point of view. Thus, the GO/WPA nanocomposite illustrates how the interactions between the components can be used for tuning the properties of nanocomposite as a whole. © 2019 Elsevier Ltd
T2  - Carbon
T1  - Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite
VL  - 156
SP  - 166
EP  - 178
DO  - 10.1016/j.carbon.2019.09.072
ER  - 
@article{
author = "Jovanović, Zoran M. and Mravik, Željko and Bajuk-Bogdanović, Danica V. and Jovanović, Sonja and Marković, Smilja and Vujković, Milica and Kovač, Janez and Vengust, Damjan and Uskoković-Marković, Snežana and Holclajtner-Antunović, Ivanka D.",
year = "2020",
abstract = "In the present study we investigated the interaction between 12-tungstophosphoric acid (WPA) and graphene oxide (GO) in their nanocomposite by utilizing the loading of WPA as an intrinsic parameter for interaction tuning. The Fourier-transform infrared spectroscopy, temperature-programmed desorption, X-ray photoelectron spectroscopy, zeta-potential measurements, thermogravimetric analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy methods revealed that ∼5–13 wt% of WPA represents critical loading that separates two distinct contributions to GO-WPA interaction. This was explained by the self-limiting nature of GO-WPA interaction, initially controlled by high dispersion of WPA on GO (up to 13 wt%), that is eventually overpowered by WPA-WPA interaction as loading increases. As a result, the WPA agglomerates are being formed because of which the hybrid character of the nanocomposite diminishes, i.e., the properties of independent components start to be manifested to greater extent. The obtained results provide an important framework for considering possible outcomes in other 2D-0D systems, whose interaction is relevant both from fundamental and applicative point of view. Thus, the GO/WPA nanocomposite illustrates how the interactions between the components can be used for tuning the properties of nanocomposite as a whole. © 2019 Elsevier Ltd",
journal = "Carbon",
title = "Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite",
volume = "156",
pages = "166-178",
doi = "10.1016/j.carbon.2019.09.072"
}
Jovanović, Z. M., Mravik, Ž., Bajuk-Bogdanović, D. V., Jovanović, S., Marković, S., Vujković, M., Kovač, J., Vengust, D., Uskoković-Marković, S.,& Holclajtner-Antunović, I. D.. (2020). Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite. in Carbon, 156, 166-178.
https://doi.org/10.1016/j.carbon.2019.09.072
Jovanović ZM, Mravik Ž, Bajuk-Bogdanović DV, Jovanović S, Marković S, Vujković M, Kovač J, Vengust D, Uskoković-Marković S, Holclajtner-Antunović ID. Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite. in Carbon. 2020;156:166-178.
doi:10.1016/j.carbon.2019.09.072 .
Jovanović, Zoran M., Mravik, Željko, Bajuk-Bogdanović, Danica V., Jovanović, Sonja, Marković, Smilja, Vujković, Milica, Kovač, Janez, Vengust, Damjan, Uskoković-Marković, Snežana, Holclajtner-Antunović, Ivanka D., "Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite" in Carbon, 156 (2020):166-178,
https://doi.org/10.1016/j.carbon.2019.09.072 . .
8
4
7