Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University ofMalaya (Malaysia), CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET(European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of Foundation for Polish Science, European Union, Regional Development Fund, Compagnia di San Paolo (Torino), Consorzio per la Fisica (Trieste), MIUR (Italy) [20108T4XTM], Thalis programme, Aristeia programme, EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund

Link to this page

Austrian Federal Ministry of Science, Research and Economy, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Science, ICT and Future Planning, National Research Foundation (NRF), Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University ofMalaya (Malaysia), CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, Ministry of Science and Technology, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET(European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of Foundation for Polish Science, European Union, Regional Development Fund, Compagnia di San Paolo (Torino), Consorzio per la Fisica (Trieste), MIUR (Italy) [20108T4XTM], Thalis programme, Aristeia programme, EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund

Authors

Publications

Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV

Khachatryan, V.; Adžić, Petar; Ekmedzic, M.; Milošević, Jovan; Rekovic, V.; Đorđević, Miloš; Milenović, Predrag

(2015)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ekmedzic, M.
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
PY  - 2015
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/591
AB  - Properties of the Higgs boson with mass near 125 GeV are measured in proton-proton collisions with the CMS experiment at the LHC. Comprehensive sets of production and decay measurements are combined. The decay channels include gamma gamma, ZZ, WW, tau tau, bb, and mu mu pairs. The data samples were collected in 2011 and 2012 and correspond to integrated luminosities of up to 5.1 fb(-1) at 7 TeV and up to 19.7 fb(-1) at 8 TeV. From the high-resolution gamma gamma and ZZ channels, the mass of the Higgs boson is determined to be 125.02(-0.27)(+0.26) (stat)(-0.15)(+0.14) (syst) GeV. For this mass value, the event yields obtained in the different analyses tagging specific decay channels and production mechanisms are consistent with those expected for the standard model Higgs boson. The combined best-fit signal relative to the standard model expectation is 1.00 +/- 0.09 (stat)(-0.07)(+0.08) (theo) +/- 0.07 (syst) at the measured mass. The couplings of the Higgs boson are probed for deviations in magnitude from the standard model predictions in multiple ways, including searches for invisible and undetected decays. No significant deviations are found.
T2  - European Physical Journal C. Particles and Fields
T1  - Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV
VL  - 75
IS  - 5
DO  - 10.1140/epjc/s10052-015-3351-7
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ekmedzic, M. and Milošević, Jovan and Rekovic, V. and Đorđević, Miloš and Milenović, Predrag",
year = "2015",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/591",
abstract = "Properties of the Higgs boson with mass near 125 GeV are measured in proton-proton collisions with the CMS experiment at the LHC. Comprehensive sets of production and decay measurements are combined. The decay channels include gamma gamma, ZZ, WW, tau tau, bb, and mu mu pairs. The data samples were collected in 2011 and 2012 and correspond to integrated luminosities of up to 5.1 fb(-1) at 7 TeV and up to 19.7 fb(-1) at 8 TeV. From the high-resolution gamma gamma and ZZ channels, the mass of the Higgs boson is determined to be 125.02(-0.27)(+0.26) (stat)(-0.15)(+0.14) (syst) GeV. For this mass value, the event yields obtained in the different analyses tagging specific decay channels and production mechanisms are consistent with those expected for the standard model Higgs boson. The combined best-fit signal relative to the standard model expectation is 1.00 +/- 0.09 (stat)(-0.07)(+0.08) (theo) +/- 0.07 (syst) at the measured mass. The couplings of the Higgs boson are probed for deviations in magnitude from the standard model predictions in multiple ways, including searches for invisible and undetected decays. No significant deviations are found.",
journal = "European Physical Journal C. Particles and Fields",
title = "Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV",
volume = "75",
number = "5",
doi = "10.1140/epjc/s10052-015-3351-7"
}
Khachatryan, V., Adžić, P., Ekmedzic, M., Milošević, J., Rekovic, V., Đorđević, M.,& Milenović, P. (2015). Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV.
European Physical Journal C. Particles and Fields, 75(5).
https://doi.org/10.1140/epjc/s10052-015-3351-7
Khachatryan V, Adžić P, Ekmedzic M, Milošević J, Rekovic V, Đorđević M, Milenović P. Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV. European Physical Journal C. Particles and Fields. 2015;75(5)
Khachatryan V., Adžić Petar, Ekmedzic M., Milošević Jovan, Rekovic V., Đorđević Miloš, Milenović Predrag, "Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV" European Physical Journal C. Particles and Fields, 75, no. 5 (2015),
https://doi.org/10.1140/epjc/s10052-015-3351-7 .
52
405
440
479