SASPRO Programme [1237/02/02-b]

Link to this page

SASPRO Programme [1237/02/02-b]

Authors

Publications

Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]

Marković, Zoran M.; Kovačova, Maria; Humpoliček, Petr; Budimir, Milica; Vajdak, Jan; Kubat, Pavel; Mičušik, Matej; Švajdlenkova, Helena; Danko, Martin; Capakova, Zdenka; Lehocky, Marian; Todorović-Marković, Biljana; Špitalsky, Zdenko

(2020)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Kovačova, Maria
AU  - Humpoliček, Petr
AU  - Budimir, Milica
AU  - Vajdak, Jan
AU  - Kubat, Pavel
AU  - Mičušik, Matej
AU  - Švajdlenkova, Helena
AU  - Danko, Martin
AU  - Capakova, Zdenka
AU  - Lehocky, Marian
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdenko
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9615
AB  - Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.
T2  - Photodiagnosis and Photodynamic Therapy
T1  - Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]
VL  - 32
SP  - 101939
DO  - 10.1016/j.pdpdt.2020.101939
ER  - 
@article{
author = "Marković, Zoran M. and Kovačova, Maria and Humpoliček, Petr and Budimir, Milica and Vajdak, Jan and Kubat, Pavel and Mičušik, Matej and Švajdlenkova, Helena and Danko, Martin and Capakova, Zdenka and Lehocky, Marian and Todorović-Marković, Biljana and Špitalsky, Zdenko",
year = "2020",
abstract = "Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.",
journal = "Photodiagnosis and Photodynamic Therapy",
title = "Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]",
volume = "32",
pages = "101939",
doi = "10.1016/j.pdpdt.2020.101939"
}
Marković, Z. M., Kovačova, M., Humpoliček, P., Budimir, M., Vajdak, J., Kubat, P., Mičušik, M., Švajdlenkova, H., Danko, M., Capakova, Z., Lehocky, M., Todorović-Marković, B.,& Špitalsky, Z.. (2020). Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]. in Photodiagnosis and Photodynamic Therapy, 32, 101939.
https://doi.org/10.1016/j.pdpdt.2020.101939
Marković ZM, Kovačova M, Humpoliček P, Budimir M, Vajdak J, Kubat P, Mičušik M, Švajdlenkova H, Danko M, Capakova Z, Lehocky M, Todorović-Marković B, Špitalsky Z. Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]. in Photodiagnosis and Photodynamic Therapy. 2020;32:101939.
doi:10.1016/j.pdpdt.2020.101939 .
Marković, Zoran M., Kovačova, Maria, Humpoliček, Petr, Budimir, Milica, Vajdak, Jan, Kubat, Pavel, Mičušik, Matej, Švajdlenkova, Helena, Danko, Martin, Capakova, Zdenka, Lehocky, Marian, Todorović-Marković, Biljana, Špitalsky, Zdenko, "Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]" in Photodiagnosis and Photodynamic Therapy, 32 (2020):101939,
https://doi.org/10.1016/j.pdpdt.2020.101939 . .

Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae

Marković, Zoran M.; Kovačova, Maria; Humpoliček, Petr; Budimir, Milica; Vajdak, Jan; Kubat, Pavel; Mičušik, Matej; Švajdlenkova, Helena; Danko, Martin; Capakova, Zdenka; Lehocky, Marian; Todorović-Marković, Biljana; Špitalsky, Zdenko

(2019)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Kovačova, Maria
AU  - Humpoliček, Petr
AU  - Budimir, Milica
AU  - Vajdak, Jan
AU  - Kubat, Pavel
AU  - Mičušik, Matej
AU  - Švajdlenkova, Helena
AU  - Danko, Martin
AU  - Capakova, Zdenka
AU  - Lehocky, Marian
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdenko
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8174
AB  - Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.
T2  - Photodiagnosis and Photodynamic Therapy
T1  - Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae
VL  - 26
SP  - 342
EP  - 349
DO  - 10.1016/j.pdpdt.2019.04.019
ER  - 
@article{
author = "Marković, Zoran M. and Kovačova, Maria and Humpoliček, Petr and Budimir, Milica and Vajdak, Jan and Kubat, Pavel and Mičušik, Matej and Švajdlenkova, Helena and Danko, Martin and Capakova, Zdenka and Lehocky, Marian and Todorović-Marković, Biljana and Špitalsky, Zdenko",
year = "2019",
abstract = "Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.",
journal = "Photodiagnosis and Photodynamic Therapy",
title = "Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae",
volume = "26",
pages = "342-349",
doi = "10.1016/j.pdpdt.2019.04.019"
}
Marković, Z. M., Kovačova, M., Humpoliček, P., Budimir, M., Vajdak, J., Kubat, P., Mičušik, M., Švajdlenkova, H., Danko, M., Capakova, Z., Lehocky, M., Todorović-Marković, B.,& Špitalsky, Z.. (2019). Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. in Photodiagnosis and Photodynamic Therapy, 26, 342-349.
https://doi.org/10.1016/j.pdpdt.2019.04.019
Marković ZM, Kovačova M, Humpoliček P, Budimir M, Vajdak J, Kubat P, Mičušik M, Švajdlenkova H, Danko M, Capakova Z, Lehocky M, Todorović-Marković B, Špitalsky Z. Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. in Photodiagnosis and Photodynamic Therapy. 2019;26:342-349.
doi:10.1016/j.pdpdt.2019.04.019 .
Marković, Zoran M., Kovačova, Maria, Humpoliček, Petr, Budimir, Milica, Vajdak, Jan, Kubat, Pavel, Mičušik, Matej, Švajdlenkova, Helena, Danko, Martin, Capakova, Zdenka, Lehocky, Marian, Todorović-Marković, Biljana, Špitalsky, Zdenko, "Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae" in Photodiagnosis and Photodynamic Therapy, 26 (2019):342-349,
https://doi.org/10.1016/j.pdpdt.2019.04.019 . .
58
30
55

Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae

Marković, Zoran M.; Kovačova, Maria; Humpoliček, Petr; Budimir, Milica; Vajdak, Jan; Kubat, Pavel; Mičušik, Matej; Švajdlenkova, Helena; Danko, Martin; Capakova, Zdenka; Lehocky, Marian; Todorović-Marković, Biljana; Špitalsky, Zdenko

(2019)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Kovačova, Maria
AU  - Humpoliček, Petr
AU  - Budimir, Milica
AU  - Vajdak, Jan
AU  - Kubat, Pavel
AU  - Mičušik, Matej
AU  - Švajdlenkova, Helena
AU  - Danko, Martin
AU  - Capakova, Zdenka
AU  - Lehocky, Marian
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdenko
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8187
AB  - Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.
T2  - Photodiagnosis and Photodynamic Therapy
T1  - Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae
VL  - 26
SP  - 342
EP  - 349
DO  - 10.1016/j.pdpdt.2019.04.019
ER  - 
@article{
author = "Marković, Zoran M. and Kovačova, Maria and Humpoliček, Petr and Budimir, Milica and Vajdak, Jan and Kubat, Pavel and Mičušik, Matej and Švajdlenkova, Helena and Danko, Martin and Capakova, Zdenka and Lehocky, Marian and Todorović-Marković, Biljana and Špitalsky, Zdenko",
year = "2019",
abstract = "Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.",
journal = "Photodiagnosis and Photodynamic Therapy",
title = "Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae",
volume = "26",
pages = "342-349",
doi = "10.1016/j.pdpdt.2019.04.019"
}
Marković, Z. M., Kovačova, M., Humpoliček, P., Budimir, M., Vajdak, J., Kubat, P., Mičušik, M., Švajdlenkova, H., Danko, M., Capakova, Z., Lehocky, M., Todorović-Marković, B.,& Špitalsky, Z.. (2019). Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. in Photodiagnosis and Photodynamic Therapy, 26, 342-349.
https://doi.org/10.1016/j.pdpdt.2019.04.019
Marković ZM, Kovačova M, Humpoliček P, Budimir M, Vajdak J, Kubat P, Mičušik M, Švajdlenkova H, Danko M, Capakova Z, Lehocky M, Todorović-Marković B, Špitalsky Z. Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. in Photodiagnosis and Photodynamic Therapy. 2019;26:342-349.
doi:10.1016/j.pdpdt.2019.04.019 .
Marković, Zoran M., Kovačova, Maria, Humpoliček, Petr, Budimir, Milica, Vajdak, Jan, Kubat, Pavel, Mičušik, Matej, Švajdlenkova, Helena, Danko, Martin, Capakova, Zdenka, Lehocky, Marian, Todorović-Marković, Biljana, Špitalsky, Zdenko, "Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae" in Photodiagnosis and Photodynamic Therapy, 26 (2019):342-349,
https://doi.org/10.1016/j.pdpdt.2019.04.019 . .
58
30
55

Enhancing photoluminescence of graphene quantum dots by thermal annealing of the graphite precursor

Jovanović, Svetlana P.; Marković, Zoran M.; Syrgiannis, Zois; Dramićanin, Miroslav; Arcudi, Francesca; La Parola, Valeria; Budimir, Milica; Todorović-Marković, Biljana

(2017)

TY  - JOUR
AU  - Jovanović, Svetlana P.
AU  - Marković, Zoran M.
AU  - Syrgiannis, Zois
AU  - Dramićanin, Miroslav
AU  - Arcudi, Francesca
AU  - La Parola, Valeria
AU  - Budimir, Milica
AU  - Todorović-Marković, Biljana
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1622
AB  - Different approaches for enhancement of the graphene quantum dots (GQDs) photoluminescence have been developed lately. We report modified electrochemical procedure for GQDs synthesis. Graphitic rods were thermal annealing at 1700 degrees C in vacuum and used for electrochemical quantum dots synthesis. We found that the modified GQDs (GQDs-1700) consist of two while in the structure of pristine (p-GQDs) three graphene layers are measured. The main structural difference between GQDs is the increased structural disorder, caused by a higher amount of the oxygen containing functional groups in the structure of GQDs-1700. The photoluminescence of GQDs-1700 is 4 times more intense, red shifted and with doubled Quantum Yield compared to p-GQDs. In addition, the changes in electrochemical behavior of GQDs are observed: the higher capacitance was noticed if GQDs posses more reducible functional groups, such as peroxyl, aldehyde and epoxy groups while increase in keto functional groups leads to the lower capacitance. (C) 2017 Elsevier Ltd. All rights reserved.
T2  - Materials Research Bulletin
T1  - Enhancing photoluminescence of graphene quantum dots by thermal annealing of the graphite precursor
VL  - 93
SP  - 183
EP  - 193
DO  - 10.1016/j.materresbull.2017.04.052
ER  - 
@article{
author = "Jovanović, Svetlana P. and Marković, Zoran M. and Syrgiannis, Zois and Dramićanin, Miroslav and Arcudi, Francesca and La Parola, Valeria and Budimir, Milica and Todorović-Marković, Biljana",
year = "2017",
abstract = "Different approaches for enhancement of the graphene quantum dots (GQDs) photoluminescence have been developed lately. We report modified electrochemical procedure for GQDs synthesis. Graphitic rods were thermal annealing at 1700 degrees C in vacuum and used for electrochemical quantum dots synthesis. We found that the modified GQDs (GQDs-1700) consist of two while in the structure of pristine (p-GQDs) three graphene layers are measured. The main structural difference between GQDs is the increased structural disorder, caused by a higher amount of the oxygen containing functional groups in the structure of GQDs-1700. The photoluminescence of GQDs-1700 is 4 times more intense, red shifted and with doubled Quantum Yield compared to p-GQDs. In addition, the changes in electrochemical behavior of GQDs are observed: the higher capacitance was noticed if GQDs posses more reducible functional groups, such as peroxyl, aldehyde and epoxy groups while increase in keto functional groups leads to the lower capacitance. (C) 2017 Elsevier Ltd. All rights reserved.",
journal = "Materials Research Bulletin",
title = "Enhancing photoluminescence of graphene quantum dots by thermal annealing of the graphite precursor",
volume = "93",
pages = "183-193",
doi = "10.1016/j.materresbull.2017.04.052"
}
Jovanović, S. P., Marković, Z. M., Syrgiannis, Z., Dramićanin, M., Arcudi, F., La Parola, V., Budimir, M.,& Todorović-Marković, B.. (2017). Enhancing photoluminescence of graphene quantum dots by thermal annealing of the graphite precursor. in Materials Research Bulletin, 93, 183-193.
https://doi.org/10.1016/j.materresbull.2017.04.052
Jovanović SP, Marković ZM, Syrgiannis Z, Dramićanin M, Arcudi F, La Parola V, Budimir M, Todorović-Marković B. Enhancing photoluminescence of graphene quantum dots by thermal annealing of the graphite precursor. in Materials Research Bulletin. 2017;93:183-193.
doi:10.1016/j.materresbull.2017.04.052 .
Jovanović, Svetlana P., Marković, Zoran M., Syrgiannis, Zois, Dramićanin, Miroslav, Arcudi, Francesca, La Parola, Valeria, Budimir, Milica, Todorović-Marković, Biljana, "Enhancing photoluminescence of graphene quantum dots by thermal annealing of the graphite precursor" in Materials Research Bulletin, 93 (2017):183-193,
https://doi.org/10.1016/j.materresbull.2017.04.052 . .
40
25
36