Slovenian Research Agency (ARRS) (No. P2-0089)

Link to this page

Slovenian Research Agency (ARRS) (No. P2-0089)

Authors

Publications

Iron oxide nanochains coated with silica: Synthesis, surface effects and magnetic properties

Tadić, Marin; Kralj, Slavko; Lalatonne, Yoann; Motte, Laurence

(2019)

TY  - JOUR
AU  - Tadić, Marin
AU  - Kralj, Slavko
AU  - Lalatonne, Yoann
AU  - Motte, Laurence
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0169433219301138
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8033
AB  - Investigation and synthesis of anisotropic magnetic nanostructures, such as wires, rods, fibers, tubes and chains, is an important field of research due to the beneficial properties and great potential for practical applications ranging from magnetic data storage to biomedicine. Silica coated iron oxide nanochains of length up to 1 μm and diameter ∼80–100 nm have been synthesized by the simultaneous magnetic assembly of superparamagnetic iron oxide nanoparticle clusters (SNCs) as links (viz. maghemite, γ-Fe2O3) and the fixation of the assembled SNCs with an additional layer of deposited silica. We reveal that is possible to achieve either superparamagnetic or ferromagnetic behavior with the nanochains depending only on their physical orientation. The superparamagnetic behavior is observed for random orientation of nanochains whereas ferromagnetic properties (HC ≈ 100 Oe) come to the fore when the orientation is mainly parallel. These peculiar magnetic properties can be related to: (1) the specific size, which is ∼9 nm, of primary building blocks of the nanochains, i.e. of maghemite nanoparticles; (2) to the anisotropic chain-like shape of the particles; and (3) to inter-particle interactions. Large pore volume and pore size of silica shell as well as good colloidal stability and magnetic responsiveness of such nanochains enable applications in biomedicine. © 2019 Elsevier B.V.
T2  - Applied Surface Science
T1  - Iron oxide nanochains coated with silica: Synthesis, surface effects and magnetic properties
VL  - 476
SP  - 641
EP  - 646
DO  - 10.1016/j.apsusc.2019.01.098
ER  - 
@article{
author = "Tadić, Marin and Kralj, Slavko and Lalatonne, Yoann and Motte, Laurence",
year = "2019",
abstract = "Investigation and synthesis of anisotropic magnetic nanostructures, such as wires, rods, fibers, tubes and chains, is an important field of research due to the beneficial properties and great potential for practical applications ranging from magnetic data storage to biomedicine. Silica coated iron oxide nanochains of length up to 1 μm and diameter ∼80–100 nm have been synthesized by the simultaneous magnetic assembly of superparamagnetic iron oxide nanoparticle clusters (SNCs) as links (viz. maghemite, γ-Fe2O3) and the fixation of the assembled SNCs with an additional layer of deposited silica. We reveal that is possible to achieve either superparamagnetic or ferromagnetic behavior with the nanochains depending only on their physical orientation. The superparamagnetic behavior is observed for random orientation of nanochains whereas ferromagnetic properties (HC ≈ 100 Oe) come to the fore when the orientation is mainly parallel. These peculiar magnetic properties can be related to: (1) the specific size, which is ∼9 nm, of primary building blocks of the nanochains, i.e. of maghemite nanoparticles; (2) to the anisotropic chain-like shape of the particles; and (3) to inter-particle interactions. Large pore volume and pore size of silica shell as well as good colloidal stability and magnetic responsiveness of such nanochains enable applications in biomedicine. © 2019 Elsevier B.V.",
journal = "Applied Surface Science",
title = "Iron oxide nanochains coated with silica: Synthesis, surface effects and magnetic properties",
volume = "476",
pages = "641-646",
doi = "10.1016/j.apsusc.2019.01.098"
}
Tadić, M., Kralj, S., Lalatonne, Y.,& Motte, L.. (2019). Iron oxide nanochains coated with silica: Synthesis, surface effects and magnetic properties. in Applied Surface Science, 476, 641-646.
https://doi.org/10.1016/j.apsusc.2019.01.098
Tadić M, Kralj S, Lalatonne Y, Motte L. Iron oxide nanochains coated with silica: Synthesis, surface effects and magnetic properties. in Applied Surface Science. 2019;476:641-646.
doi:10.1016/j.apsusc.2019.01.098 .
Tadić, Marin, Kralj, Slavko, Lalatonne, Yoann, Motte, Laurence, "Iron oxide nanochains coated with silica: Synthesis, surface effects and magnetic properties" in Applied Surface Science, 476 (2019):641-646,
https://doi.org/10.1016/j.apsusc.2019.01.098 . .
51
29
49