Portuguese Foundation for Science and Technology (FCT, Portugal) ([Contract no. IST-ID/156/2018, B. Šljukić]

Link to this page

Portuguese Foundation for Science and Technology (FCT, Portugal) ([Contract no. IST-ID/156/2018, B. Šljukić]

Authors

Publications

Template-based synthesis of Co3O4 and Co3O4/SnO2 bifunctional catalysts with enhanced electrocatalytic properties for reversible oxygen evolution and reduction reaction

Milikić, Jadranka; Knežević, Sara; Ognjanović, Miloš; Stanković, Dalibor M.; Rakočević, Lazar; Šljukić, Biljana

(2023)

TY  - JOUR
AU  - Milikić, Jadranka
AU  - Knežević, Sara
AU  - Ognjanović, Miloš
AU  - Stanković, Dalibor M.
AU  - Rakočević, Lazar
AU  - Šljukić, Biljana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10860
AB  - Porous cobalt (III) oxide (Co3O4) and mixed cobalt (III) oxide - tin oxide (Co3O4/SnO2) were prepared by a novel template-based hydrothermal method resulting in their spherical morphology as confirmed by thorough physico-chemical characterisation. Two oxides were systematically examined as bifunctional electrocatalysts for oxygen reduction (ORR) and evolution (OER) reaction in alkaline media by voltammetry with rotating disk electrode, electrochemical impedance spectroscopy, and chronoamperometry. Low-cost Co3O4 and Co3O4/SnO2 electrocatalysts showed excellent ORR performance with low onset and half-wave potential, low Tafel slope, and the number of exchange electrons near 4, comparable to the commercial Pt/C electrocatalyst. Low OER onset potential of 1.52 and 1.57 V was observed for Co3O4 and Co3O4/SnO2, respectively, with low charge transfer resistance under anodic polarization conditions. Finally, to test bifunctional activity and durability of the two electrocatalyst, switch OER/ORR test was carried out.
T2  - International Journal of Hydrogen Energy
T1  - Template-based synthesis of Co3O4 and Co3O4/SnO2 bifunctional catalysts with enhanced electrocatalytic properties for reversible oxygen evolution and reduction reaction
IS  - InPress
DO  - 10.1016/j.ijhydene.2023.03.433
ER  - 
@article{
author = "Milikić, Jadranka and Knežević, Sara and Ognjanović, Miloš and Stanković, Dalibor M. and Rakočević, Lazar and Šljukić, Biljana",
year = "2023",
abstract = "Porous cobalt (III) oxide (Co3O4) and mixed cobalt (III) oxide - tin oxide (Co3O4/SnO2) were prepared by a novel template-based hydrothermal method resulting in their spherical morphology as confirmed by thorough physico-chemical characterisation. Two oxides were systematically examined as bifunctional electrocatalysts for oxygen reduction (ORR) and evolution (OER) reaction in alkaline media by voltammetry with rotating disk electrode, electrochemical impedance spectroscopy, and chronoamperometry. Low-cost Co3O4 and Co3O4/SnO2 electrocatalysts showed excellent ORR performance with low onset and half-wave potential, low Tafel slope, and the number of exchange electrons near 4, comparable to the commercial Pt/C electrocatalyst. Low OER onset potential of 1.52 and 1.57 V was observed for Co3O4 and Co3O4/SnO2, respectively, with low charge transfer resistance under anodic polarization conditions. Finally, to test bifunctional activity and durability of the two electrocatalyst, switch OER/ORR test was carried out.",
journal = "International Journal of Hydrogen Energy",
title = "Template-based synthesis of Co3O4 and Co3O4/SnO2 bifunctional catalysts with enhanced electrocatalytic properties for reversible oxygen evolution and reduction reaction",
number = "InPress",
doi = "10.1016/j.ijhydene.2023.03.433"
}
Milikić, J., Knežević, S., Ognjanović, M., Stanković, D. M., Rakočević, L.,& Šljukić, B.. (2023). Template-based synthesis of Co3O4 and Co3O4/SnO2 bifunctional catalysts with enhanced electrocatalytic properties for reversible oxygen evolution and reduction reaction. in International Journal of Hydrogen Energy(InPress).
https://doi.org/10.1016/j.ijhydene.2023.03.433
Milikić J, Knežević S, Ognjanović M, Stanković DM, Rakočević L, Šljukić B. Template-based synthesis of Co3O4 and Co3O4/SnO2 bifunctional catalysts with enhanced electrocatalytic properties for reversible oxygen evolution and reduction reaction. in International Journal of Hydrogen Energy. 2023;(InPress).
doi:10.1016/j.ijhydene.2023.03.433 .
Milikić, Jadranka, Knežević, Sara, Ognjanović, Miloš, Stanković, Dalibor M., Rakočević, Lazar, Šljukić, Biljana, "Template-based synthesis of Co3O4 and Co3O4/SnO2 bifunctional catalysts with enhanced electrocatalytic properties for reversible oxygen evolution and reduction reaction" in International Journal of Hydrogen Energy, no. InPress (2023),
https://doi.org/10.1016/j.ijhydene.2023.03.433 . .
4
3