ANPCyT, Argentina, YerPhI, Armenia, ARC, Australia, BMWF, FWF, Austria, ANAS, Azerbaijan, SSTC, Belarus, CNPq, FAPESP, Brazil, NSERC, NRC, CFI, Canada, CERN, CONICYT, Chile, CAS, MOST, NSFC, China, COLCIENCIAS, Colombia, MSMT CR, MPO CR, VSC CR, Czech Republic, DNRF, DNSRC, Lundbeck Foundation, Denmark, EPLANET, ERC, NSRF, European Union, IN2P3-CNRS, CEA-DSM/IRFU, France, GNSF, Georgia, BMBF, Germany, DFG, HGF, MPG, AvH Foundation, Germany, GSRT, NSRF, Greece, ISF, MINERVA, GIF, DIP, Benoziyo Center, Israel, INFN, Italy, MEXT, JSPS, Japan, CNRST, Morocco, FOM, NWO, Netherlands, BRF, RCN, Norway, MNiSW, NCN, Poland, GRICES, FCT, Portugal, MNE/IFA, Romania, MES of Russia, ROSATOM, Russian Federation, JINR, MSTD, Serbia, MSSR, Slovakia, ARRS, MIZ. S, Slovenia, DST/NRF, South Africa, MINECO, Spain, SRC, Wallenberg Foundation, Sweden, SER, SNSF, Cantons of Bern, Switzerland, Geneva, Switzerland, NSC, Taiwan, TAEK, Turkey, STFC, Royal Society, Leverhulme Trust, United Kingdom, DOE, NSF, United States of America, ICREA

Link to this page

ANPCyT, Argentina, YerPhI, Armenia, ARC, Australia, BMWF, FWF, Austria, ANAS, Azerbaijan, SSTC, Belarus, CNPq, FAPESP, Brazil, NSERC, NRC, CFI, Canada, CERN, CONICYT, Chile, CAS, MOST, NSFC, China, COLCIENCIAS, Colombia, MSMT CR, MPO CR, VSC CR, Czech Republic, DNRF, DNSRC, Lundbeck Foundation, Denmark, EPLANET, ERC, NSRF, European Union, IN2P3-CNRS, CEA-DSM/IRFU, France, GNSF, Georgia, BMBF, Germany, DFG, HGF, MPG, AvH Foundation, Germany, GSRT, NSRF, Greece, ISF, MINERVA, GIF, DIP, Benoziyo Center, Israel, INFN, Italy, MEXT, JSPS, Japan, CNRST, Morocco, FOM, NWO, Netherlands, BRF, RCN, Norway, MNiSW, NCN, Poland, GRICES, FCT, Portugal, MNE/IFA, Romania, MES of Russia, ROSATOM, Russian Federation, JINR, MSTD, Serbia, MSSR, Slovakia, ARRS, MIZ. S, Slovenia, DST/NRF, South Africa, MINECO, Spain, SRC, Wallenberg Foundation, Sweden, SER, SNSF, Cantons of Bern, Switzerland, Geneva, Switzerland, NSC, Taiwan, TAEK, Turkey, STFC, Royal Society, Leverhulme Trust, United Kingdom, DOE, NSF, United States of America, ICREA

Authors

Publications

Measurement of dijet cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

Aad, G.; Agatonović-Jovin, Tatjana; Božović-Jelisavčić, Ivanka; Ćirković, Predrag; Krstić, Jelena; Mamužić, Judita; Popović, D. S.; Sijacki, Dj.; Simić, Lj.; Vranješ, Nenad; Vranješ Milosavljević, Marija; Živković, Lada

(2014)

TY  - JOUR
AU  - Aad, G.
AU  - Agatonović-Jovin, Tatjana
AU  - Božović-Jelisavčić, Ivanka
AU  - Ćirković, Predrag
AU  - Krstić, Jelena
AU  - Mamužić, Judita
AU  - Popović, D. S.
AU  - Sijacki, Dj.
AU  - Simić, Lj.
AU  - Vranješ, Nenad
AU  - Vranješ Milosavljević, Marija
AU  - Živković, Lada
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/6023
AB  - Double-differential dijet cross-sections measured in pp collisions at the LHC with a 7 TeV centre-of-mass energy are presented as functions of dijet mass and half the rapidity separation of the two highest-p(T) jets. These measurements are obtained using data corresponding to an integrated luminosity of 4.5 fb(-1), recorded by the ATLAS detector in 2011. The data are corrected for detector effects so that cross-sections are presented at the particle level. Cross-sections are measured up to 5 TeV dijet mass using jets reconstructed with the anti-k(t) algorithm for values of the jet radius parameter of 0.4 and 0.6. The cross-sections are compared with next-to-leading-order perturbative QCD calculations by NLOJet++ corrected to account for non-perturbative effects. Comparisons with POWHEG predictions, using a next-to-leading-order matrix element calculation interfaced to a parton-shower Monte Carlo simulation, are also shown. Electroweak effects are accounted for in both cases. The quantitative comparison of data and theoretical predictions obtained using various parameterizations of the parton distribution functions is performed using a frequentist method. In general, good agreement with data is observed for the NLOJet++ theoretical predictions when using the CT10, NNPDF2.1 and MSTW 2008 PDF sets. Disagreement is observed when using the ABM11 and HERAPDF1.5 PDF sets for some ranges of dijet mass and half the rapidity separation. An example setting a lower limit on the compositeness scale for a model of contact interactions is presented, showing that the unfolded results can be used to constrain contributions to dijet production beyond that predicted by the Standard Model.
T2  - Journal of High Energy Physics
T1  - Measurement of dijet cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector
IS  - 5
DO  - 10.1007/JHEP05(2014)059
ER  - 
@article{
author = "Aad, G. and Agatonović-Jovin, Tatjana and Božović-Jelisavčić, Ivanka and Ćirković, Predrag and Krstić, Jelena and Mamužić, Judita and Popović, D. S. and Sijacki, Dj. and Simić, Lj. and Vranješ, Nenad and Vranješ Milosavljević, Marija and Živković, Lada",
year = "2014",
abstract = "Double-differential dijet cross-sections measured in pp collisions at the LHC with a 7 TeV centre-of-mass energy are presented as functions of dijet mass and half the rapidity separation of the two highest-p(T) jets. These measurements are obtained using data corresponding to an integrated luminosity of 4.5 fb(-1), recorded by the ATLAS detector in 2011. The data are corrected for detector effects so that cross-sections are presented at the particle level. Cross-sections are measured up to 5 TeV dijet mass using jets reconstructed with the anti-k(t) algorithm for values of the jet radius parameter of 0.4 and 0.6. The cross-sections are compared with next-to-leading-order perturbative QCD calculations by NLOJet++ corrected to account for non-perturbative effects. Comparisons with POWHEG predictions, using a next-to-leading-order matrix element calculation interfaced to a parton-shower Monte Carlo simulation, are also shown. Electroweak effects are accounted for in both cases. The quantitative comparison of data and theoretical predictions obtained using various parameterizations of the parton distribution functions is performed using a frequentist method. In general, good agreement with data is observed for the NLOJet++ theoretical predictions when using the CT10, NNPDF2.1 and MSTW 2008 PDF sets. Disagreement is observed when using the ABM11 and HERAPDF1.5 PDF sets for some ranges of dijet mass and half the rapidity separation. An example setting a lower limit on the compositeness scale for a model of contact interactions is presented, showing that the unfolded results can be used to constrain contributions to dijet production beyond that predicted by the Standard Model.",
journal = "Journal of High Energy Physics",
title = "Measurement of dijet cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector",
number = "5",
doi = "10.1007/JHEP05(2014)059"
}
Aad, G., Agatonović-Jovin, T., Božović-Jelisavčić, I., Ćirković, P., Krstić, J., Mamužić, J., Popović, D. S., Sijacki, Dj., Simić, Lj., Vranješ, N., Vranješ Milosavljević, M.,& Živković, L.. (2014). Measurement of dijet cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector. in Journal of High Energy Physics(5).
https://doi.org/10.1007/JHEP05(2014)059
Aad G, Agatonović-Jovin T, Božović-Jelisavčić I, Ćirković P, Krstić J, Mamužić J, Popović DS, Sijacki D, Simić L, Vranješ N, Vranješ Milosavljević M, Živković L. Measurement of dijet cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector. in Journal of High Energy Physics. 2014;(5).
doi:10.1007/JHEP05(2014)059 .
Aad, G., Agatonović-Jovin, Tatjana, Božović-Jelisavčić, Ivanka, Ćirković, Predrag, Krstić, Jelena, Mamužić, Judita, Popović, D. S., Sijacki, Dj., Simić, Lj., Vranješ, Nenad, Vranješ Milosavljević, Marija, Živković, Lada, "Measurement of dijet cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector" in Journal of High Energy Physics, no. 5 (2014),
https://doi.org/10.1007/JHEP05(2014)059 . .
3
37
38
44