NATO [Grant No. G5751]

Link to this page

NATO [Grant No. G5751]

Authors

Publications

Near-Infrared Luminescent Lifetime-Based Thermometry with Mn5+-Activated Sr3(PO4)2and Ba3(PO4)2Phosphors

Ristić, Zoran; Piotrowski, Wojciech; Medić, Mina M.; Periša, Jovana; Antić, Željka; Marciniak, Lukasz; Dramićanin, Miroslav

(2022)

TY  - JOUR
AU  - Ristić, Zoran
AU  - Piotrowski, Wojciech
AU  - Medić, Mina M.
AU  - Periša, Jovana
AU  - Antić, Željka
AU  - Marciniak, Lukasz
AU  - Dramićanin, Miroslav
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10225
AB  - This paper describes Mn5+-activated Sr3(PO4)2and Ba3(PO4)2phosphors as near-infrared lifetime-based luminescence thermometry probes. Materials were prepared by a solid-state method, and their rhombohedral structures were confirmed by X-ray diffraction analysis. Diffuse reflectance measurements showed broad and strong absorption between 650 and 950 nm covering the first biological transparency window and having an absorption maximum at ∼660 nm. By switching Sr with Ba, the following changes in the photoluminescent properties were observed: (i) a red shift of the emission maximum (1173 nm → 1191 nm) and (ii) a decrease in the excited-state lifetime. Thermometric properties of the phosphors were assessed by measuring and analyzing the temperature dependence of the Mn5+excited-state lifetime. Lifetime-based luminescence thermometry revealed a relative sensitivity of 0.5% K-1at 310 K (physiologically relevant range) and a maximal value of ∼1% K-1at temperatures between 400 and 500 K. © 2022 American Chemical Society.
T2  - ACS Applied Electronic Materials
T1  - Near-Infrared Luminescent Lifetime-Based Thermometry with Mn5+-Activated Sr3(PO4)2and Ba3(PO4)2Phosphors
VL  - 4
IS  - 3
SP  - 1057
EP  - 1062
DO  - 10.1021/acsaelm.1c01207
ER  - 
@article{
author = "Ristić, Zoran and Piotrowski, Wojciech and Medić, Mina M. and Periša, Jovana and Antić, Željka and Marciniak, Lukasz and Dramićanin, Miroslav",
year = "2022",
abstract = "This paper describes Mn5+-activated Sr3(PO4)2and Ba3(PO4)2phosphors as near-infrared lifetime-based luminescence thermometry probes. Materials were prepared by a solid-state method, and their rhombohedral structures were confirmed by X-ray diffraction analysis. Diffuse reflectance measurements showed broad and strong absorption between 650 and 950 nm covering the first biological transparency window and having an absorption maximum at ∼660 nm. By switching Sr with Ba, the following changes in the photoluminescent properties were observed: (i) a red shift of the emission maximum (1173 nm → 1191 nm) and (ii) a decrease in the excited-state lifetime. Thermometric properties of the phosphors were assessed by measuring and analyzing the temperature dependence of the Mn5+excited-state lifetime. Lifetime-based luminescence thermometry revealed a relative sensitivity of 0.5% K-1at 310 K (physiologically relevant range) and a maximal value of ∼1% K-1at temperatures between 400 and 500 K. © 2022 American Chemical Society.",
journal = "ACS Applied Electronic Materials",
title = "Near-Infrared Luminescent Lifetime-Based Thermometry with Mn5+-Activated Sr3(PO4)2and Ba3(PO4)2Phosphors",
volume = "4",
number = "3",
pages = "1057-1062",
doi = "10.1021/acsaelm.1c01207"
}
Ristić, Z., Piotrowski, W., Medić, M. M., Periša, J., Antić, Ž., Marciniak, L.,& Dramićanin, M.. (2022). Near-Infrared Luminescent Lifetime-Based Thermometry with Mn5+-Activated Sr3(PO4)2and Ba3(PO4)2Phosphors. in ACS Applied Electronic Materials, 4(3), 1057-1062.
https://doi.org/10.1021/acsaelm.1c01207
Ristić Z, Piotrowski W, Medić MM, Periša J, Antić Ž, Marciniak L, Dramićanin M. Near-Infrared Luminescent Lifetime-Based Thermometry with Mn5+-Activated Sr3(PO4)2and Ba3(PO4)2Phosphors. in ACS Applied Electronic Materials. 2022;4(3):1057-1062.
doi:10.1021/acsaelm.1c01207 .
Ristić, Zoran, Piotrowski, Wojciech, Medić, Mina M., Periša, Jovana, Antić, Željka, Marciniak, Lukasz, Dramićanin, Miroslav, "Near-Infrared Luminescent Lifetime-Based Thermometry with Mn5+-Activated Sr3(PO4)2and Ba3(PO4)2Phosphors" in ACS Applied Electronic Materials, 4, no. 3 (2022):1057-1062,
https://doi.org/10.1021/acsaelm.1c01207 . .
19
2
14