EU-H2020 [grant agreement N 101007417]

Link to this page

EU-H2020 [grant agreement N 101007417]

Authors

Publications

Influence of zirconium and copper sub-layer in cell integrations on femtosecond laser-processed Ti thin films

Božinović, Nevena; Savva, Kyriaki; Rajić, Vladimir; Popović, Maja; Tošić, Dragana; Janjetović, Kristina; Despotović, Ana; Zogović, Nevena; Stratakis, Emmanuel; Petrović, Suzana

(2023)

TY  - JOUR
AU  - Božinović, Nevena
AU  - Savva, Kyriaki
AU  - Rajić, Vladimir
AU  - Popović, Maja
AU  - Tošić, Dragana
AU  - Janjetović, Kristina
AU  - Despotović, Ana
AU  - Zogović, Nevena
AU  - Stratakis, Emmanuel
AU  - Petrović, Suzana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11547
AB  - The creation of novel biocompatible Ti-based thin films with a Zr or Cu sub-layer modified by ultrafast laser processing is studied. To prepare bioactive surfaces, ultrafast laser processing is focused on the formation of laser-induced periodic surface structures (LIPSS) with the production of oxide phases at the surfaces. Two differently designed multilayer thin films Ti/Cu/Ti and Ti/Zr/Ti were deposited on the silicon using the ion sputtering method. The Ti thin film contains Cu or Zr sub-layer (thickness of 10 nm) at the 10 nm below the surface. The composition and surface morphology variations for these systems, deposited and laser-processed under the same experimental conditions, were caused only by different thermo-physical properties of the sub-layer (Cu or Zr). The surface morphology in the form of LIPSS, led to improved cell adhesion and stable cells/thin films interface compared to as-deposited samples. Field-emission scanning electron microscopy and MTT analysis revealed that laser processing of both systems increased cell adhesion, proliferation, and metabolical activity of L929 mouse fibroblast cells compared to non-modified flat surfaces. Overall, the biocompatibility of Zrcontaining thin films is better than Ti/Cu/Ti system. Further, laser processing and formation of LIPSS makes Ti/Zr/Ti thin films excellent candidate for biomedical
T2  - Materials Chemistry and Physics
T1  - Influence of zirconium and copper sub-layer in cell integrations on femtosecond laser-processed Ti thin films
VL  - 308
SP  - 128286
DO  - 10.1016/j.matchemphys.2023.128286
ER  - 
@article{
author = "Božinović, Nevena and Savva, Kyriaki and Rajić, Vladimir and Popović, Maja and Tošić, Dragana and Janjetović, Kristina and Despotović, Ana and Zogović, Nevena and Stratakis, Emmanuel and Petrović, Suzana",
year = "2023",
abstract = "The creation of novel biocompatible Ti-based thin films with a Zr or Cu sub-layer modified by ultrafast laser processing is studied. To prepare bioactive surfaces, ultrafast laser processing is focused on the formation of laser-induced periodic surface structures (LIPSS) with the production of oxide phases at the surfaces. Two differently designed multilayer thin films Ti/Cu/Ti and Ti/Zr/Ti were deposited on the silicon using the ion sputtering method. The Ti thin film contains Cu or Zr sub-layer (thickness of 10 nm) at the 10 nm below the surface. The composition and surface morphology variations for these systems, deposited and laser-processed under the same experimental conditions, were caused only by different thermo-physical properties of the sub-layer (Cu or Zr). The surface morphology in the form of LIPSS, led to improved cell adhesion and stable cells/thin films interface compared to as-deposited samples. Field-emission scanning electron microscopy and MTT analysis revealed that laser processing of both systems increased cell adhesion, proliferation, and metabolical activity of L929 mouse fibroblast cells compared to non-modified flat surfaces. Overall, the biocompatibility of Zrcontaining thin films is better than Ti/Cu/Ti system. Further, laser processing and formation of LIPSS makes Ti/Zr/Ti thin films excellent candidate for biomedical",
journal = "Materials Chemistry and Physics",
title = "Influence of zirconium and copper sub-layer in cell integrations on femtosecond laser-processed Ti thin films",
volume = "308",
pages = "128286",
doi = "10.1016/j.matchemphys.2023.128286"
}
Božinović, N., Savva, K., Rajić, V., Popović, M., Tošić, D., Janjetović, K., Despotović, A., Zogović, N., Stratakis, E.,& Petrović, S.. (2023). Influence of zirconium and copper sub-layer in cell integrations on femtosecond laser-processed Ti thin films. in Materials Chemistry and Physics, 308, 128286.
https://doi.org/10.1016/j.matchemphys.2023.128286
Božinović N, Savva K, Rajić V, Popović M, Tošić D, Janjetović K, Despotović A, Zogović N, Stratakis E, Petrović S. Influence of zirconium and copper sub-layer in cell integrations on femtosecond laser-processed Ti thin films. in Materials Chemistry and Physics. 2023;308:128286.
doi:10.1016/j.matchemphys.2023.128286 .
Božinović, Nevena, Savva, Kyriaki, Rajić, Vladimir, Popović, Maja, Tošić, Dragana, Janjetović, Kristina, Despotović, Ana, Zogović, Nevena, Stratakis, Emmanuel, Petrović, Suzana, "Influence of zirconium and copper sub-layer in cell integrations on femtosecond laser-processed Ti thin films" in Materials Chemistry and Physics, 308 (2023):128286,
https://doi.org/10.1016/j.matchemphys.2023.128286 . .