ANPCyT, Argentina, YerPhI, Armenia, ARC, Australia, BMWF, Austria, FWF, Austria, ANAS, Azerbaijan, SSTC, Belarus, CNPq, Brazil, FAPESP, Brazil, NSERC, Canada, NRC, Canada, CFI, Canada, CERN, CONICYT, Chile, CAS, China, MOST, China, NSFC, China, COLCIEN-CIAS, Colombia, MSMT CR, Czech Republic, MPO CR, Czech Republic, VSC CR, Czech Republic, DNRF, Denmark, DNSRC, Denmark, Lundbeck Foundation, Denmark, EPLANET, ERC, NSRF, European Union, IN2P3-CNRS, France, CEA-DSM/IRFU, France, GNSF, Georgia, BMBF, Germany, DFG, Germany, HGF, Germany, MPG, Germany, AvH Foundation, Germany, GSRT, Greece, NSRF, Greece, ISF, Israel, MINERVA, Israel, GIF, Israel, ICORE, Israel, Benoziyo Center, Israel, INFN, Italy, MEXT, Japan, JSPS, Japan, CNRST, Morocco, FOM, The Netherlands, NWO, The Netherlands, BRF, Norway, RCN, Norway, MNiSW, Poland, NCN, Poland, GRICES, Portugal, FCT, Portugal, MNE/IFA, Romania, MES of Russia, ROSATOM, Russian Federation, JINR, MSTD, Serbia, MSSR, Slovakia, ARRS, Slovenia, MIZS, Slovenia, DST/NRF, South Africa, MINECO, Spain, SRC, Sweden, Wallenberg Foundation, Sweden, SER, Switzerland, SNSF, Switzerland, Cantons of Bern and Geneva, Switzerland, NSC, Taiwan, TAEK, Turkey, STFC, UK, Royal Society, UK, Leverhulme Trust, UK, DOE, USA, NSF, USA, ICREA

Link to this page

ANPCyT, Argentina, YerPhI, Armenia, ARC, Australia, BMWF, Austria, FWF, Austria, ANAS, Azerbaijan, SSTC, Belarus, CNPq, Brazil, FAPESP, Brazil, NSERC, Canada, NRC, Canada, CFI, Canada, CERN, CONICYT, Chile, CAS, China, MOST, China, NSFC, China, COLCIEN-CIAS, Colombia, MSMT CR, Czech Republic, MPO CR, Czech Republic, VSC CR, Czech Republic, DNRF, Denmark, DNSRC, Denmark, Lundbeck Foundation, Denmark, EPLANET, ERC, NSRF, European Union, IN2P3-CNRS, France, CEA-DSM/IRFU, France, GNSF, Georgia, BMBF, Germany, DFG, Germany, HGF, Germany, MPG, Germany, AvH Foundation, Germany, GSRT, Greece, NSRF, Greece, ISF, Israel, MINERVA, Israel, GIF, Israel, ICORE, Israel, Benoziyo Center, Israel, INFN, Italy, MEXT, Japan, JSPS, Japan, CNRST, Morocco, FOM, The Netherlands, NWO, The Netherlands, BRF, Norway, RCN, Norway, MNiSW, Poland, NCN, Poland, GRICES, Portugal, FCT, Portugal, MNE/IFA, Romania, MES of Russia, ROSATOM, Russian Federation, JINR, MSTD, Serbia, MSSR, Slovakia, ARRS, Slovenia, MIZS, Slovenia, DST/NRF, South Africa, MINECO, Spain, SRC, Sweden, Wallenberg Foundation, Sweden, SER, Switzerland, SNSF, Switzerland, Cantons of Bern and Geneva, Switzerland, NSC, Taiwan, TAEK, Turkey, STFC, UK, Royal Society, UK, Leverhulme Trust, UK, DOE, USA, NSF, USA, ICREA

Authors

Publications

Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

Aad, G.; Agatonović-Jovin, Tatjana; Ćirković, Predrag; Dimitrievska, A.; Krstić, Jelena; Mamužić, Judita; Marjanović, M.; Popović, D. S.; Sijacki, Dj.; Simić, Lj.; Vranješ, Nenad; Vranješ Milosavljević, Marija

(2014)

TY  - JOUR
AU  - Aad, G.
AU  - Agatonović-Jovin, Tatjana
AU  - Ćirković, Predrag
AU  - Dimitrievska, A.
AU  - Krstić, Jelena
AU  - Mamužić, Judita
AU  - Marjanović, M.
AU  - Popović, D. S.
AU  - Sijacki, Dj.
AU  - Simić, Lj.
AU  - Vranješ, Nenad
AU  - Vranješ Milosavljević, Marija
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/295
AB  - This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb(-1) of LHC proton-proton collision data taken at centre-of-mass energies of root s = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05% in most of the detector acceptance, rising to 0.2% in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2-1% for electrons with a transverse energy of 10 GeV, and is on average 0.3% for photons. The detector resolution is determined with a relative inaccuracy of less than 10% for electrons and photons up to 60 GeV transverse energy, rising to 40% for transverse energies above 500 GeV.
T2  - European Physical Journal C. Particles and Fields
T1  - Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data
VL  - 74
IS  - 10
DO  - 10.1140/epjc/s10052-014-3071-4
ER  - 
@article{
author = "Aad, G. and Agatonović-Jovin, Tatjana and Ćirković, Predrag and Dimitrievska, A. and Krstić, Jelena and Mamužić, Judita and Marjanović, M. and Popović, D. S. and Sijacki, Dj. and Simić, Lj. and Vranješ, Nenad and Vranješ Milosavljević, Marija",
year = "2014",
abstract = "This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb(-1) of LHC proton-proton collision data taken at centre-of-mass energies of root s = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05% in most of the detector acceptance, rising to 0.2% in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2-1% for electrons with a transverse energy of 10 GeV, and is on average 0.3% for photons. The detector resolution is determined with a relative inaccuracy of less than 10% for electrons and photons up to 60 GeV transverse energy, rising to 40% for transverse energies above 500 GeV.",
journal = "European Physical Journal C. Particles and Fields",
title = "Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data",
volume = "74",
number = "10",
doi = "10.1140/epjc/s10052-014-3071-4"
}
Aad, G., Agatonović-Jovin, T., Ćirković, P., Dimitrievska, A., Krstić, J., Mamužić, J., Marjanović, M., Popović, D. S., Sijacki, Dj., Simić, Lj., Vranješ, N.,& Vranješ Milosavljević, M.. (2014). Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data. in European Physical Journal C. Particles and Fields, 74(10).
https://doi.org/10.1140/epjc/s10052-014-3071-4
Aad G, Agatonović-Jovin T, Ćirković P, Dimitrievska A, Krstić J, Mamužić J, Marjanović M, Popović DS, Sijacki D, Simić L, Vranješ N, Vranješ Milosavljević M. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data. in European Physical Journal C. Particles and Fields. 2014;74(10).
doi:10.1140/epjc/s10052-014-3071-4 .
Aad, G., Agatonović-Jovin, Tatjana, Ćirković, Predrag, Dimitrievska, A., Krstić, Jelena, Mamužić, Judita, Marjanović, M., Popović, D. S., Sijacki, Dj., Simić, Lj., Vranješ, Nenad, Vranješ Milosavljević, Marija, "Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data" in European Physical Journal C. Particles and Fields, 74, no. 10 (2014),
https://doi.org/10.1140/epjc/s10052-014-3071-4 . .
2
169
191
268