COST Action [MP 1103]

Link to this page

COST Action [MP 1103]

Authors

Publications

Hydrogen sorption properties of MgH2/NaBH4 composites

Kurko, Sandra V.; Aurora, Annalisa; Gattia, Daniele Mirabile; Contini, Vittoria; Montone, Amelia; Rašković-Lovre, Željka; Grbović-Novaković, Jasmina

(2013)

TY  - JOUR
AU  - Kurko, Sandra V.
AU  - Aurora, Annalisa
AU  - Gattia, Daniele Mirabile
AU  - Contini, Vittoria
AU  - Montone, Amelia
AU  - Rašković-Lovre, Željka
AU  - Grbović-Novaković, Jasmina
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5689
AB  - The hydrogen sorption properties of magnesium hydride-sodium borohydride composites prepared by means of high-energy ball milling under Ar atmosphere were investigated. Mutual influence of milling time and the content of NaBH4 were studied. Microstructural and morphological analyses were carried out using X-ray Diffraction (XRD), laser scattering measurements and Scanning Electron Microscopy (SEM), while kinetic analysis and cycling were performed in a Sieverts volumetric apparatus. It has been shown that low content of NaBH4 and short milling time are beneficial for hydrogen sorption kinetics. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
T2  - International Journal of Hydrogen Energy
T1  - Hydrogen sorption properties of MgH2/NaBH4 composites
VL  - 38
IS  - 27
SP  - 12140
EP  - 12145
DO  - 10.1016/j.ijhydene.2013.04.075
ER  - 
@article{
author = "Kurko, Sandra V. and Aurora, Annalisa and Gattia, Daniele Mirabile and Contini, Vittoria and Montone, Amelia and Rašković-Lovre, Željka and Grbović-Novaković, Jasmina",
year = "2013",
abstract = "The hydrogen sorption properties of magnesium hydride-sodium borohydride composites prepared by means of high-energy ball milling under Ar atmosphere were investigated. Mutual influence of milling time and the content of NaBH4 were studied. Microstructural and morphological analyses were carried out using X-ray Diffraction (XRD), laser scattering measurements and Scanning Electron Microscopy (SEM), while kinetic analysis and cycling were performed in a Sieverts volumetric apparatus. It has been shown that low content of NaBH4 and short milling time are beneficial for hydrogen sorption kinetics. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.",
journal = "International Journal of Hydrogen Energy",
title = "Hydrogen sorption properties of MgH2/NaBH4 composites",
volume = "38",
number = "27",
pages = "12140-12145",
doi = "10.1016/j.ijhydene.2013.04.075"
}
Kurko, S. V., Aurora, A., Gattia, D. M., Contini, V., Montone, A., Rašković-Lovre, Ž.,& Grbović-Novaković, J.. (2013). Hydrogen sorption properties of MgH2/NaBH4 composites. in International Journal of Hydrogen Energy, 38(27), 12140-12145.
https://doi.org/10.1016/j.ijhydene.2013.04.075
Kurko SV, Aurora A, Gattia DM, Contini V, Montone A, Rašković-Lovre Ž, Grbović-Novaković J. Hydrogen sorption properties of MgH2/NaBH4 composites. in International Journal of Hydrogen Energy. 2013;38(27):12140-12145.
doi:10.1016/j.ijhydene.2013.04.075 .
Kurko, Sandra V., Aurora, Annalisa, Gattia, Daniele Mirabile, Contini, Vittoria, Montone, Amelia, Rašković-Lovre, Željka, Grbović-Novaković, Jasmina, "Hydrogen sorption properties of MgH2/NaBH4 composites" in International Journal of Hydrogen Energy, 38, no. 27 (2013):12140-12145,
https://doi.org/10.1016/j.ijhydene.2013.04.075 . .
21
16
22