COST Action TD1402-RADIOMAG

Link to this page

COST Action TD1402-RADIOMAG

Authors

Publications

Magnetic properties and heating efficacy of magnesium doped magnetite nanoparticles obtained by co-precipitation method

Kusigerski, Vladan; Illés, Erzsébet; Blanuša, Jovan; Gyergyek, Sašo; Bošković, Marko; Perović, Marija M.; Spasojević, Vojislav

(2019)

TY  - JOUR
AU  - Kusigerski, Vladan
AU  - Illés, Erzsébet
AU  - Blanuša, Jovan
AU  - Gyergyek, Sašo
AU  - Bošković, Marko
AU  - Perović, Marija M.
AU  - Spasojević, Vojislav
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7983
AB  - Ferrofluids based on magnesium substituted magnetite nanoparticles MgxFe3−xO4 (x = 0.1; 0.2; 0.4) were synthesised by a chemical co-precipitation method. Their physical properties have been compared with those of the magnetite based ferrofluid obtained by the same synthesis route. Both XRD and TEM studies showed particle size decrease with the increased Mg content while DLS experiments pointed to the more prominent aggregation of Mg-containing nanoparticles. Magnetic properties investigation conducted on the powder (i.e. dried) specimens showed decrease of magnetization values with increased Mg content except for the lowest concentration of x = 0.1 where substantial saturation magnetization rise of about 40% was recorded at room temperature. Heating abilities of the studied ferrofluids under the applied AC fields (SAR values) also showed decreasing trend with the increased Mg content even for x = 0.1 sample despite its elevated magnetization value. This trend has been understood as a consequence of the changed intrinsic nanoparticle properties such as size and magnetic anisotropy, as well as contribution of a collective behaviour due to an increased nanoparticle aggregation in Mg-doped systems.
T2  - Journal of Magnetism and Magnetic Materials
T1  - Magnetic properties and heating efficacy of magnesium doped magnetite nanoparticles obtained by co-precipitation method
VL  - 475
SP  - 470
EP  - 478
DO  - 10.1016/j.jmmm.2018.11.127
ER  - 
@article{
author = "Kusigerski, Vladan and Illés, Erzsébet and Blanuša, Jovan and Gyergyek, Sašo and Bošković, Marko and Perović, Marija M. and Spasojević, Vojislav",
year = "2019",
abstract = "Ferrofluids based on magnesium substituted magnetite nanoparticles MgxFe3−xO4 (x = 0.1; 0.2; 0.4) were synthesised by a chemical co-precipitation method. Their physical properties have been compared with those of the magnetite based ferrofluid obtained by the same synthesis route. Both XRD and TEM studies showed particle size decrease with the increased Mg content while DLS experiments pointed to the more prominent aggregation of Mg-containing nanoparticles. Magnetic properties investigation conducted on the powder (i.e. dried) specimens showed decrease of magnetization values with increased Mg content except for the lowest concentration of x = 0.1 where substantial saturation magnetization rise of about 40% was recorded at room temperature. Heating abilities of the studied ferrofluids under the applied AC fields (SAR values) also showed decreasing trend with the increased Mg content even for x = 0.1 sample despite its elevated magnetization value. This trend has been understood as a consequence of the changed intrinsic nanoparticle properties such as size and magnetic anisotropy, as well as contribution of a collective behaviour due to an increased nanoparticle aggregation in Mg-doped systems.",
journal = "Journal of Magnetism and Magnetic Materials",
title = "Magnetic properties and heating efficacy of magnesium doped magnetite nanoparticles obtained by co-precipitation method",
volume = "475",
pages = "470-478",
doi = "10.1016/j.jmmm.2018.11.127"
}
Kusigerski, V., Illés, E., Blanuša, J., Gyergyek, S., Bošković, M., Perović, M. M.,& Spasojević, V.. (2019). Magnetic properties and heating efficacy of magnesium doped magnetite nanoparticles obtained by co-precipitation method. in Journal of Magnetism and Magnetic Materials, 475, 470-478.
https://doi.org/10.1016/j.jmmm.2018.11.127
Kusigerski V, Illés E, Blanuša J, Gyergyek S, Bošković M, Perović MM, Spasojević V. Magnetic properties and heating efficacy of magnesium doped magnetite nanoparticles obtained by co-precipitation method. in Journal of Magnetism and Magnetic Materials. 2019;475:470-478.
doi:10.1016/j.jmmm.2018.11.127 .
Kusigerski, Vladan, Illés, Erzsébet, Blanuša, Jovan, Gyergyek, Sašo, Bošković, Marko, Perović, Marija M., Spasojević, Vojislav, "Magnetic properties and heating efficacy of magnesium doped magnetite nanoparticles obtained by co-precipitation method" in Journal of Magnetism and Magnetic Materials, 475 (2019):470-478,
https://doi.org/10.1016/j.jmmm.2018.11.127 . .
45
21
44