Science and Technology Planning Project of Guangdong Province for Applied Science and Technology Research and Development [2017B090917001]

Link to this page

Science and Technology Planning Project of Guangdong Province for Applied Science and Technology Research and Development [2017B090917001]

Authors

Publications

Li2TiO3:Mn4+ Deep‐Red Phosphor for the Lifetime‐Based Luminescence Thermometry

Dramićanin, Miroslav; Milićević, Bojana R.; Đorđević, Vesna R.; Ristić, Zoran; Zhou, Jianbang; Milivojević, Dušan; Papan, Jelena; Brik, Mikhail G.; Ma, Chong‐Geng; Srivastava, Alok M; Wu, Mingmei

(2019)

TY  - JOUR
AU  - Dramićanin, Miroslav
AU  - Milićević, Bojana R.
AU  - Đorđević, Vesna R.
AU  - Ristić, Zoran
AU  - Zhou, Jianbang
AU  - Milivojević, Dušan
AU  - Papan, Jelena
AU  - Brik, Mikhail G.
AU  - Ma, Chong‐Geng
AU  - Srivastava, Alok M
AU  - Wu, Mingmei
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8360
AB  - Luminescence of monoclinic lithium metatitanate (Li2TiO3) powders activated with different quantities of Mn4+ is studied in detail. Its strong deep-red emission arising from the Mn4+ 2Eg → 4A2g spin forbidden transition is centered at around 688 nm and is suitable for luminescence thermometry. Structural and electron paramagnetic resonance analyses show that Mn4+ ions are equally distributed in two almost identical Ti4+ sites in which they are octahedrally coordinated by six oxygen ions. Calculations based on the exchange charge model of the crystal field provided values of Racah parameters (B=760 cm−1, C= 2993 cm−1), crystal-field splitting Dq= 2043 cm−1, and the nephelauxetic parameter β1=0.9775. The maximal quantum efficiency of 24.1% at room temperature is found for 0.126% Mn4+ concentration. Temperature quenching of emission occurs by a cross-over via 4T2 excited state of the Mn4+ ions with T1/2=262 K and is quite favorable for the application in the lifetime-based luminescence thermometry since relative changes in emission decay values are exceptionally-large (around 3.21% at room temperature). We derived theoretical expressions for the temperature dependence of the absolute and relative sensitivities and discuss the influence of host material properties on lifetime sensitivities. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
T2  - ChemistrySelect
T1  - Li2TiO3:Mn4+ Deep‐Red Phosphor for the Lifetime‐Based Luminescence Thermometry
VL  - 4
IS  - 24
SP  - 7067
EP  - 7075
DO  - 10.1002/slct.201901590
ER  - 
@article{
author = "Dramićanin, Miroslav and Milićević, Bojana R. and Đorđević, Vesna R. and Ristić, Zoran and Zhou, Jianbang and Milivojević, Dušan and Papan, Jelena and Brik, Mikhail G. and Ma, Chong‐Geng and Srivastava, Alok M and Wu, Mingmei",
year = "2019",
abstract = "Luminescence of monoclinic lithium metatitanate (Li2TiO3) powders activated with different quantities of Mn4+ is studied in detail. Its strong deep-red emission arising from the Mn4+ 2Eg → 4A2g spin forbidden transition is centered at around 688 nm and is suitable for luminescence thermometry. Structural and electron paramagnetic resonance analyses show that Mn4+ ions are equally distributed in two almost identical Ti4+ sites in which they are octahedrally coordinated by six oxygen ions. Calculations based on the exchange charge model of the crystal field provided values of Racah parameters (B=760 cm−1, C= 2993 cm−1), crystal-field splitting Dq= 2043 cm−1, and the nephelauxetic parameter β1=0.9775. The maximal quantum efficiency of 24.1% at room temperature is found for 0.126% Mn4+ concentration. Temperature quenching of emission occurs by a cross-over via 4T2 excited state of the Mn4+ ions with T1/2=262 K and is quite favorable for the application in the lifetime-based luminescence thermometry since relative changes in emission decay values are exceptionally-large (around 3.21% at room temperature). We derived theoretical expressions for the temperature dependence of the absolute and relative sensitivities and discuss the influence of host material properties on lifetime sensitivities. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim",
journal = "ChemistrySelect",
title = "Li2TiO3:Mn4+ Deep‐Red Phosphor for the Lifetime‐Based Luminescence Thermometry",
volume = "4",
number = "24",
pages = "7067-7075",
doi = "10.1002/slct.201901590"
}
Dramićanin, M., Milićević, B. R., Đorđević, V. R., Ristić, Z., Zhou, J., Milivojević, D., Papan, J., Brik, M. G., Ma, C., Srivastava, A. M.,& Wu, M.. (2019). Li2TiO3:Mn4+ Deep‐Red Phosphor for the Lifetime‐Based Luminescence Thermometry. in ChemistrySelect, 4(24), 7067-7075.
https://doi.org/10.1002/slct.201901590
Dramićanin M, Milićević BR, Đorđević VR, Ristić Z, Zhou J, Milivojević D, Papan J, Brik MG, Ma C, Srivastava AM, Wu M. Li2TiO3:Mn4+ Deep‐Red Phosphor for the Lifetime‐Based Luminescence Thermometry. in ChemistrySelect. 2019;4(24):7067-7075.
doi:10.1002/slct.201901590 .
Dramićanin, Miroslav, Milićević, Bojana R., Đorđević, Vesna R., Ristić, Zoran, Zhou, Jianbang, Milivojević, Dušan, Papan, Jelena, Brik, Mikhail G., Ma, Chong‐Geng, Srivastava, Alok M, Wu, Mingmei, "Li2TiO3:Mn4+ Deep‐Red Phosphor for the Lifetime‐Based Luminescence Thermometry" in ChemistrySelect, 4, no. 24 (2019):7067-7075,
https://doi.org/10.1002/slct.201901590 . .
1
44
27
45

The enhancement of emission intensity and enlargement of color gamut by a simple local structure substitution with highly thermal stability preserved

Yan, Jing; Zhang, Ziwang; Milićević, Bojana R.; Li, Junhao; Liang, Qiongyun; Zhou, Jianbang; Wang, Yunfeng; Shi, Jianxin; Wu, Mingmei

(2019)

TY  - JOUR
AU  - Yan, Jing
AU  - Zhang, Ziwang
AU  - Milićević, Bojana R.
AU  - Li, Junhao
AU  - Liang, Qiongyun
AU  - Zhou, Jianbang
AU  - Wang, Yunfeng
AU  - Shi, Jianxin
AU  - Wu, Mingmei
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8346
AB  - The local crystal structure engineering becomes an important strategy to design new phosphors with enhanced optical and thermal performance of white light-emitting diodes. Herein, a series of Na3Sc2(PO4)3: Eu2+ and KyNa2.97-ySc2(PO4)3: 0.03Eu2+ phosphors were synthesized via traditional high temperature solid-state reaction method. X-ray powder diffraction analysis and Rietveld refinement provide insight in the detailed crystal structure. Furthermore, Eu2+ doped Na3Sc2(PO4)3 exhibits bright blue emission in 400–540 nm spectral range with a maximum value at ~ 460 nm under n-UV light excitation. The concentration quenching mechanism of Eu2+ in Na3Sc2(PO4)3 is certified to be a dipole-dipole interaction. Additionally, crystal structure tailoring is a potential strategy to design new phosphors for particular applications. Therefore, the effects of K+ substitution on the structure and photoluminescence of Eu2+ activated Na3Sc2(PO4)3 is presented in detail. Rietveld refinement data revealed that unit cell volume and Na/K–O band length increase when K+ occupy the Na+ sites. This sensitive local structure resulted in a considerable enhancement of the photoluminescence intensity of Eu2+. Incorporation of K+ in the crystal structure is a feasible route to realize fine-tuning of emission color and broaden the color gamut. In the meantime, Na2.7K0.27Sc2(PO4)3: 0.03Eu2+ phosphor exhibits excellent thermal stability at high temperature over a significant radiative recombination of energy transfer from traps to Eu2+. These results confirm that Na2.7K0.27Sc2(PO4)3: 0.03Eu2+ phosphor might be used as a blue component in n-UV chip activated white light-emitting diodes for the next-generation of indoor solid-state lighting applications. © 2019 Elsevier B.V.
T2  - Optical Materials
T1  - The enhancement of emission intensity and enlargement of color gamut by a simple local structure substitution with highly thermal stability preserved
VL  - 95
SP  - 109201
DO  - 10.1016/j.optmat.2019.109201
ER  - 
@article{
author = "Yan, Jing and Zhang, Ziwang and Milićević, Bojana R. and Li, Junhao and Liang, Qiongyun and Zhou, Jianbang and Wang, Yunfeng and Shi, Jianxin and Wu, Mingmei",
year = "2019",
abstract = "The local crystal structure engineering becomes an important strategy to design new phosphors with enhanced optical and thermal performance of white light-emitting diodes. Herein, a series of Na3Sc2(PO4)3: Eu2+ and KyNa2.97-ySc2(PO4)3: 0.03Eu2+ phosphors were synthesized via traditional high temperature solid-state reaction method. X-ray powder diffraction analysis and Rietveld refinement provide insight in the detailed crystal structure. Furthermore, Eu2+ doped Na3Sc2(PO4)3 exhibits bright blue emission in 400–540 nm spectral range with a maximum value at ~ 460 nm under n-UV light excitation. The concentration quenching mechanism of Eu2+ in Na3Sc2(PO4)3 is certified to be a dipole-dipole interaction. Additionally, crystal structure tailoring is a potential strategy to design new phosphors for particular applications. Therefore, the effects of K+ substitution on the structure and photoluminescence of Eu2+ activated Na3Sc2(PO4)3 is presented in detail. Rietveld refinement data revealed that unit cell volume and Na/K–O band length increase when K+ occupy the Na+ sites. This sensitive local structure resulted in a considerable enhancement of the photoluminescence intensity of Eu2+. Incorporation of K+ in the crystal structure is a feasible route to realize fine-tuning of emission color and broaden the color gamut. In the meantime, Na2.7K0.27Sc2(PO4)3: 0.03Eu2+ phosphor exhibits excellent thermal stability at high temperature over a significant radiative recombination of energy transfer from traps to Eu2+. These results confirm that Na2.7K0.27Sc2(PO4)3: 0.03Eu2+ phosphor might be used as a blue component in n-UV chip activated white light-emitting diodes for the next-generation of indoor solid-state lighting applications. © 2019 Elsevier B.V.",
journal = "Optical Materials",
title = "The enhancement of emission intensity and enlargement of color gamut by a simple local structure substitution with highly thermal stability preserved",
volume = "95",
pages = "109201",
doi = "10.1016/j.optmat.2019.109201"
}
Yan, J., Zhang, Z., Milićević, B. R., Li, J., Liang, Q., Zhou, J., Wang, Y., Shi, J.,& Wu, M.. (2019). The enhancement of emission intensity and enlargement of color gamut by a simple local structure substitution with highly thermal stability preserved. in Optical Materials, 95, 109201.
https://doi.org/10.1016/j.optmat.2019.109201
Yan J, Zhang Z, Milićević BR, Li J, Liang Q, Zhou J, Wang Y, Shi J, Wu M. The enhancement of emission intensity and enlargement of color gamut by a simple local structure substitution with highly thermal stability preserved. in Optical Materials. 2019;95:109201.
doi:10.1016/j.optmat.2019.109201 .
Yan, Jing, Zhang, Ziwang, Milićević, Bojana R., Li, Junhao, Liang, Qiongyun, Zhou, Jianbang, Wang, Yunfeng, Shi, Jianxin, Wu, Mingmei, "The enhancement of emission intensity and enlargement of color gamut by a simple local structure substitution with highly thermal stability preserved" in Optical Materials, 95 (2019):109201,
https://doi.org/10.1016/j.optmat.2019.109201 . .
5
2
4

Efficient Luminescence Enhancement of Mg 2 TiO 4 :Mn 4+ Red Phosphor by Incorporating Plasmonic Ag@SiO 2 Nanoparticles

Dolgov, Leonid; Hong, Junyu; Zhou, Lei; Li, Xiaohui; Li, Junhao; Đorđević, Vesna R.; Dramićanin, Miroslav; Shi, Jianxin; Wu, Mingmei

(2019)

TY  - JOUR
AU  - Dolgov, Leonid
AU  - Hong, Junyu
AU  - Zhou, Lei
AU  - Li, Xiaohui
AU  - Li, Junhao
AU  - Đorđević, Vesna R.
AU  - Dramićanin, Miroslav
AU  - Shi, Jianxin
AU  - Wu, Mingmei
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8349
AB  - One of prospective ways for boosting efficiency of luminescent materials is their combination with noble metal nanoparticles. Collective, so-called plasmon, oscillations of surface electrons in a nanoparticle can resonantly interact with incident or fluorescent light and cause an increase in the light absorption cross section or radiative rate for an adjacent emitter. Plasmonic inorganic phosphors require gentle host crystallization at which added noble nanoparticles will not suffer from aggregation or oxidation. The prospective plasmonic Mg2TiO4:Mn4+ phosphor containing core@shell Ag@SiO2 nanoparticles is prepared here by spare low-temperature annealing of a sol-gel host precursor. It is revealed that Mn4+ luminescence nonmonotonously depends on the size and concentration of 40 and 70 nm silver nanoparticles. It is demonstrated that luminescence of the Mg2TiO4:Mn4+ phosphor can be up to a 1.5 times increase when Mn4+ excitation is supported by localized surface plasmon resonance in Ag@SiO2 nanoparticles. © 2019 American Chemical Society.
T2  - ACS Applied Materials and Interfaces
T1  - Efficient Luminescence Enhancement of Mg 2 TiO 4 :Mn 4+ Red Phosphor by Incorporating Plasmonic Ag@SiO 2 Nanoparticles
VL  - 11
IS  - 23
SP  - 21004
EP  - 21009
DO  - 10.1021/acsami.9b05781
ER  - 
@article{
author = "Dolgov, Leonid and Hong, Junyu and Zhou, Lei and Li, Xiaohui and Li, Junhao and Đorđević, Vesna R. and Dramićanin, Miroslav and Shi, Jianxin and Wu, Mingmei",
year = "2019",
abstract = "One of prospective ways for boosting efficiency of luminescent materials is their combination with noble metal nanoparticles. Collective, so-called plasmon, oscillations of surface electrons in a nanoparticle can resonantly interact with incident or fluorescent light and cause an increase in the light absorption cross section or radiative rate for an adjacent emitter. Plasmonic inorganic phosphors require gentle host crystallization at which added noble nanoparticles will not suffer from aggregation or oxidation. The prospective plasmonic Mg2TiO4:Mn4+ phosphor containing core@shell Ag@SiO2 nanoparticles is prepared here by spare low-temperature annealing of a sol-gel host precursor. It is revealed that Mn4+ luminescence nonmonotonously depends on the size and concentration of 40 and 70 nm silver nanoparticles. It is demonstrated that luminescence of the Mg2TiO4:Mn4+ phosphor can be up to a 1.5 times increase when Mn4+ excitation is supported by localized surface plasmon resonance in Ag@SiO2 nanoparticles. © 2019 American Chemical Society.",
journal = "ACS Applied Materials and Interfaces",
title = "Efficient Luminescence Enhancement of Mg 2 TiO 4 :Mn 4+ Red Phosphor by Incorporating Plasmonic Ag@SiO 2 Nanoparticles",
volume = "11",
number = "23",
pages = "21004-21009",
doi = "10.1021/acsami.9b05781"
}
Dolgov, L., Hong, J., Zhou, L., Li, X., Li, J., Đorđević, V. R., Dramićanin, M., Shi, J.,& Wu, M.. (2019). Efficient Luminescence Enhancement of Mg 2 TiO 4 :Mn 4+ Red Phosphor by Incorporating Plasmonic Ag@SiO 2 Nanoparticles. in ACS Applied Materials and Interfaces, 11(23), 21004-21009.
https://doi.org/10.1021/acsami.9b05781
Dolgov L, Hong J, Zhou L, Li X, Li J, Đorđević VR, Dramićanin M, Shi J, Wu M. Efficient Luminescence Enhancement of Mg 2 TiO 4 :Mn 4+ Red Phosphor by Incorporating Plasmonic Ag@SiO 2 Nanoparticles. in ACS Applied Materials and Interfaces. 2019;11(23):21004-21009.
doi:10.1021/acsami.9b05781 .
Dolgov, Leonid, Hong, Junyu, Zhou, Lei, Li, Xiaohui, Li, Junhao, Đorđević, Vesna R., Dramićanin, Miroslav, Shi, Jianxin, Wu, Mingmei, "Efficient Luminescence Enhancement of Mg 2 TiO 4 :Mn 4+ Red Phosphor by Incorporating Plasmonic Ag@SiO 2 Nanoparticles" in ACS Applied Materials and Interfaces, 11, no. 23 (2019):21004-21009,
https://doi.org/10.1021/acsami.9b05781 . .
1
25
18
27